PINS document reference 5.4.18.2

APPENDIX ES18.2

SURFACE WATER MANAGEMENT PLAN FOR THE PROPOSED EXTENDED EAST NORTHANTS RESOURCE MANAGEMENT FACILITY (REPORT REFERENCE AU/KCW/JRC/20032/01SWMP DATED JULY 2021)

SURFACE WATER MANAGEMENT PLAN FOR THE PROPOSED EXTENDED EAST NORTHANTS RESOURCE MANAGEMENT FACILITY

PINS project reference: WS010005

PINS document reference: 5.4.18.2

Report Reference: AU/KCW/JRC/20032/01SWMP

July 2021

Baddesley Colliery Offices, Main Road, Baxterley, Atherstone, Warwickshire, CV9 2LE.

Telephone: 01827 717891, Fax: 01827 718507

CONTENTS

1.	Introduction	1
2.	Principles of surface water management in the operational areas of the site	3
3.	Current site catchments	6
4.	Principles of the surface water management plan	10
5.	Restored site catchments and drainage constraints	14
6.	Attenuation storage	17
7.	Calculation of the capacity of the proposed ditches for the conveyance of surface water	18
8.	The maintenance and management of the surface water drainage system	21
9.	Conclusions	23
10.	References	24

TABLES

Table 1	Surface water catchment areas
Table 2	Upstream catchment areas

FIGURES

Figure 1	Documented surface water catchments (drawing reference AU/KCW/03-21/22297)
Figure 2	Topographical LiDAR data (drawing reference AU/KCW/03-21/22319)
Figure 3	Sub-catchments at and in the vicinity of the site (drawing reference AU/KCW/03-21/22354)

Figure 4 Indicative surface water drainage ditches (drawing

reference AU/KCW/05-21/22467)

Figure 5 Restored surface water catchments (drawing

reference AU/KCW/05-21/22466)

APPENDICES

Appendix A Surface Water Management Plan dated May 2007

Appendix B Topographical survey of the proposed western extension

Appendix C Proposed restoration concept scheme

Appendix D Greenfield runoff calculations

Appendix E Attenuation storage calculations

Appendix F Drainage ditch calculations

This report has been prepared by MJCA with all reasonable skill, care and diligence, and taking account of the Services and the Terms agreed between MJCA and the Client. This report is confidential to the client and MJCA accepts no responsibility whatsoever to third parties to whom this report, or any part thereof, is made known, unless formally agreed by MJCA beforehand. Any such party relies upon the report at their own risk.

1. Introduction

- 1.1 MJCA is commissioned by Augean South Limited (Augean) to prepare a Surface Water Management Plan for the restored East Northants Resource Management Facility (ENRMF) to include the proposed western extension to the site. The western extension to the site and alterations to the existing ENRMF are the subject of an application for a Development Consent Order (DCO) with PINS project reference WS010005. This Surface Water Management Plan comprises an update to the current approved surface water management plan for the site dated May 2007 (2007 SWMP). A copy of the 2007 SWMP is provided at Appendix A to this report. This Surface Water Management Plan (2021 SWMP) has been prepared in support of the application for the DCO. The purpose of the 2021 SWMP is to demonstrate that surface water can be managed as part of the restored site such that there is no significant change in drainage or increase in flood risk downstream of the site.
- 1.2 Operational surface water management is regulated by the Environment Agency through Environmental Permit reference EPR TP3430GW for the site. The principles of the operational surface water management are presented in this surface water management plan.
- 1.3 The 2021 SWMP is based on the agreed 2007 SWMP and relies on information presented in the 2007 SWMP hence no amendments to the calculations or design works presented in the 2007 SWMP have been carried out as part of this surface water management plan. Consistent with guidance calculations have been carried out to demonstrate that surface water runoff from a 1 in 100 year rainfall event with an allowance for climate change can be managed on site with discharge at the pre-development greenfield runoff rate or 2l/s/ha whichever is greater or at the permitted discharge rate.
- 1.4 Schematic plans of the proposed surface water drainage ditchcourses are presented in this report. The principles for the detailed designs of the ditchcourses presented in the 2007 SWMP will be used when the final designs

are prepared prior to restoration of each phase of the site. It is concluded that surface water runoff from a 1 in 100 year rainfall event with an allowance for climate change can be managed on site. It is anticipated that the precise locations of the ditches and surface water attenuation basins or detention basins presented in this report may change following further investigations in the central area of the site where a proposed ditchcourse will convey water from west to east across the site to discharge into a swallow hole consistent with current routes of surface water flow. Any changes will be subject to final design and approval from the relevant planning authority as part of the final detailed designs prepared prior to restoration of each phase of the site.

2. Principles of surface water management in the operational areas of the site

- 2.1 As there will be continuity of operation between the existing ENRMF site and the proposed western extension area the scheme for managing surface water during the operational period in the western extension is based generally on the current surface water management practices at the site. The management of surface water in the operational areas of the site is the subject of specific Augean site management procedures implemented through Augean's Environmental Management Systems and regulated by the Environment Agency through the Environmental Permit. The general principles of the operational surface water management procedures are explained in this report.
- 2.2 Surface water runoff from the restored areas in the existing ENRMF site is managed by a system of drains and ponds broadly in accordance with the existing 2007 SWMP. Part of the current surface water management systems on the site comprises a series of drainage channels (cut off ditches) which are located across the landfill and round the site boundary generally. The water from the channels discharges to a series of ponds which are located strategically at points near the boundary to manage flow.
- 2.3 The status of each area on the site changes over time as the site operations progress, for the purposes of operational surface water management the operational site at any given time is spilt into the following conceptual catchment areas and surface water management systems:
 - Excavation and landfill cell construction areas Incident rainfall and runoff
 to these areas either infiltrates into the ground, evaporates, or is contained
 within the excavation which is then dewatered to allow the cell construction
 works to progress.
 - Operational landfill cells Incident rainfall and runoff to these areas is collected in the cell and absorbed into the waste mass and becomes part of the waste and leachate within the cell.

- Uncapped or uncovered areas of completed cells with waste exposed at
 the surface These areas are limited to the small area of the most recently
 completed landfill cell and rainfall and runoff is managed as for operational
 landfill cells. Given the availability of site derived low permeability clays these
 areas are temporarily capped quickly with capping and restoration to follow.
- Capped and restored areas, including temporarily capped and areas with clean stockpiled materials (site derived overburden and clays) Once temporarily capped, or capped and restored, a ditch system is developed following the principles of the 2007 SWMP to allow the separate collection of clean surface water runoff so that it can be directed to clean surface water ponds for discharge from site. These areas continue to change due to stockpiling needs and the principles of the 2007 SWMP are progressively implemented. The ongoing development of the site will allow further capped and restored areas to be completed and allow connection of the surface water systems to the permitted discharge point in the south east of the site.
- Soil treatment plant (STP) The STP comprises a sealed surface area. Specific design calculations for the STP show that the storage volume in the tanks and on the soil processing pad area is capable of providing sufficient surface water storage for a 1 in 100 year event. The surface water runoff control procedures and requirements of the STP are monitored and reviewed and where necessary updated to reflect future changes. The site development assumes that in the operational life of the site the STP will be removed and the area will be excavated and developed as a landfill cell and then restored following the principles of the 2007 SWMP.
- Dredging waste lagoon Incident rainfall and runoff to this area is collected
 within the dredging waste lagoon and the collected water is used in the STP
 processes. The site development assumes that in the operational life of the
 site the dredging waste lagoon will be removed and the area excavated and
 developed as a landfill cell and then restored following the principles of the
 2007 SWMP.
- Haul roads Incident rainfall and runoff to the haul roads is collected within the ditches constructed adjacent to the haul roads and directed to dedicated

surface water lagoons or collection points. Given the potential for waste residues to accumulate on the haul roads, the collection of surface water runoff from the haul roads within the same ditches, lagoons and ponds as clean water is avoided. Potentially 'dirty' water runoff from haul roads is used in dust suppression, in wheel washes and managed through the STP surface water system.

- Ditches and ponds The ditch and pond system is being developed as areas
 of the site are restored following the principles of the 2007 SWMP to allow the
 separate collection of clean surface water runoff so that it can be directed to
 clean surface water ponds or discharged from site.
- 2.4 In summary the collection of clean water runoff from capped and restored areas is separate from the collection of runoff from haul roads comprising potentially contaminated water. The generation of potentially contaminated water is reduced by constructing separate bunded ditches along haul roads with separate dedicated clean and potentially polluted surface water collection lagoons.
- 2.5 The principles of the operational surface water management procedures will continue in the proposed western extension with the installation of a system of drains and attenuation basins following the principles of the 2007 SWMP and the restoration proposals presented in this report.

3. Current site catchments

- 3.1 The hydrology at and in the vicinity of the site is described in detail in the Environmental Statement submitted in support of the DCO application. The site is located in the catchment of the River Nene which flows generally eastwards and is located approximately 6km east south east of the existing ENRMF site at the closest point.
- Agency catchment data explorer website indicates that the proposed western extension is partially within the catchment of the Wittering Brook and is partially within the catchment of the Willow Brook consistent with the existing ENRMF site. The catchments of the Wittering Brook and the Willow Brook are shown on Figure 1.
- 3.3 A drainage ditch runs along the western and southern boundaries of Collyweston Great Wood to the east of the proposed western extension and north of the existing ENRMF site. It is understood that the drainage ditch continues eastwards from the site joining a tributary of the Wittering Brook where it issues approximately 2.0km north east of the existing ENRMF site. The Wittering Brook joins the River Nene approximately 7.5km east of the existing ENRMF site.
- 3.4 The ditch to which site runoff is discharged via the permitted discharge point in the south east of the existing ENRMF site flows generally to the south and joins a drainage ditch running west to east on the west side of Stamford Road approximately 450m south south east of the existing ENRMF site. The west to east drainage ditch runs along the northern boundary of Little Wood approximately 50m south of the western extension and continues eastwards to the east of Stamford Road and then south eastwards to where it joins a tributary of Willow Brook. The tributary outfalls to the Willow Brook approximately 2.5km south of the existing ENRMF site. The Willow Brook joins the River Nene approximately 9km south east of the existing ENRMF site.

Permitted ENRMF site

3.5 The existing ENRMF site comprises a northern and a southern catchment area. The details of the catchment areas and the currently approved surface water management scheme for these areas is presented in the 2007 SWMP (Appendix A).

Proposed western extension

- 3.6 Consistent with the existing ENRMF site, the proposed western extension is on a surface water divide. The north eastern half of the northern area of the proposed western extension drains to the east to the drainage ditch which runs along the western and southern boundaries of Collyweston Great Wood eventually joining a tributary of the Wittering Brook. The remainder of the northern section and the central area of the proposed western extension to the landfill drains via field drains and drainage ditches to a swallow hole located approximately 10m to the north of the north western corner of the existing ENRMF site boundary. Surface water entering the swallow hole at the site enters groundwater beneath the site which it is likely feeds tributaries of the Willow Brook and the Willow Brook to the south. The southern section of the proposed western extension area drains to the south and south east to the drainage ditch that runs from west to east approximately 50m south of the site and continues eastwards to the east of Stamford Road and then south eastwards to where it joins a tributary of Willow Brook.
- Light Detection and Ranging (LIDAR) data at and in the vicinity of the site from the Environment Agency National LIDAR Programme digital terrain model (DTM). The topography at and in the vicinity of the site comprising the available LIDAR data are shown on Figure 2. A topographical survey of the proposed western extension is presented at Appendix B. The LIDAR data is consistent with the topographical survey of the site as can be seen from a comparison of the survey (Appendix B) and the LIDAR data (Figure 2). The site catchments have been delineated based on the LIDAR data and the

catchments are presented on Figure 3. The approximate areas of the predevelopment catchment areas across the western extension are presented in Table 1.

Surface water entering the site from upstream

- 3.8 A number of drainage ditches from land to the west of the extension area drain into the perimeter drainage ditches round the proposed western extension area with a drainage ditch from the south culverted under the central part of the extension area towards the swallow hole. A second culvert approximately 175m north of the southern culvert is located under the central part of the extension area draining from the west towards the swallow hole. The entrance to the southern culvert was partially filled with soil debris during a site visit in June 2021 with the exit in the southern valley feature near the swallow hole buried. Surface water from the perimeter ditch was observed entering a clay pipe close to the culvert entrance. The pipe was orientated along the boundary between the northern and southern part of the proposed western extension. The outfall of the pipe could not be located. It is known that drainage along this boundary is routed to flow towards the swallow hole entering the swallow hole from the south.
- 3.9 Based on the available LIDAR data for topography to the west of the site, areas to the north west of the site drain towards the northern part of the northern area of the site and towards the south of the northern area as well as to the central area of the site. Areas to the south west of the site drain towards the central area of the site. There are areas to the north west, west and south west of the site that drain towards depressions located to the west of the central area of the site. Based on observations made during site visits in February and June 2021 these comprise dolines with water draining into the depressions infiltrating the ground in the base of the depressions. At the time of the site visits there was little evidence of surface water flowing from these depressions onto the site or entering the culverts under the central part of the extension area.

- 3.10 A small area to the west of the south western corner of the site will drain to the southern area of the site. The upstream catchments in the vicinity of the site are shown on Figure 3.
- 3.11 The approximate areas of the upstream catchments draining to the western extension are presented in Table 2.

Flood risk

3.12 Flood risk at and in the vicinity of the site is described in detail in the Environmental Statement submitted in support of the DCO application. The site is located in Flood Zone 1 comprising land having a less than 1 in 1,000 annual probability of river or sea flooding. Hazardous waste landfill sites comprise 'more vulnerable development' as defined in the National Planning Policy Framework (NPPF) technical guidance on flood risk (reference 1) and they are considered appropriate development in Flood Zone 1. The flood risk maps show that the majority of the site is shown as at very low to low risk of flooding from surface water with limited areas of medium to high risk in the central area of the proposed western extension at the extremities of the culverts and in the vicinity of the swallow hole.

4. Principles of the surface water management plan

- 4.1 The Wittering Brook and the tributary of the Willow Brook to which the drainage ditches collecting runoff from the site discharge are ordinary watercourses. Lead local flood authorities, district councils and internal drainage boards carry out flood risk management work on ordinary watercourses. North Northamptonshire Council is the Lead local Flood Authority (LLFA) for the ordinary watercourses in the vicinity of the site and is a statutory consultee to the planning process to assess the surface water drainage implications of proposed developments.
- 4.2 LLFA guidance (reference 2 and 3), Department for Environment, Food and Rural Affairs (DEFRA), Sustainable Drainage Systems guidance (reference 4) and Industry Code of Practice guidance on surface water management systems at landfill sites (reference 5) has been used together with guidance presented on the Environment Agency website (reference 6) and included in the technical guidance to the NPPF in respect of flood risk (reference 1) to inform the 2021 SWMP.
- 4.3 The proposed restoration concept scheme for the whole of the ENRMF site including the existing ENRMF site and the proposed western extension area is presented on the plan presented at Appendix C. The restoration topographic contours together with the indicative surface water features that will be present at the site following restoration are shown on Figure 4. The proposed restoration does not include any areas of hardstanding and comprises a domed restoration profile compared with the relatively flat predevelopment topography. Soil stripped during excavations at the site will be retained on site and used in the restoration. The restoration soils will comprise clay loam and clay soils.
- 4.4 The 2021 SWMP is based on sustainable drainage principles consistent with guidance. Sustainable drainage systems typically control runoff rates and volumes hence reduce the risk of downstream flooding, encourage infiltration rather than direct conveyance of surface water where possible, reduce

concentrations of suspended solids in runoff and where possible provide habitat for wildlife and enhanced aesthetic and amenity value. As the surface water management plan has been developed to be consistent with the principles of sustainable drainage the components of the scheme form part of a system of integrated water management features which will contribute to the sustainable management of surface water at the restored ENRMF by controlling runoff as close to the source where feasible and managing water on a site wide basis taking into consideration the potential for impacts on surface water flows and quality locally and in the wider hydrological environment.

- **4.5** The design principles on which the 2021 SWMP is based are summarised below:
 - A series of surface water attenuation basins or detention basins will be created in the restored areas of the site.
 - Shallow ditches will direct runoff to the basins and ditches will convey water between the basins and the point of discharge from the site where discharge is not directly from the basins.
 - The rate at which water can leave each attenuation basin will be controlled so that during extreme rainfall events a proportion of runoff will be held back to attenuate the runoff peak.
 - The function of the basins is for surface water attenuation only. Should the
 basins be developed such that water is maintained in the basins for other
 purposes such as ecology a freeboard will be maintained to accommodate
 the necessary surface water attenuation.
 - The current outlet for the discharge of water from the surface water management system will be maintained so that water can drain by gravity and in a controlled manner to the permitted discharge point at the southern east corner of the existing ENRMF site. Suitable outlets for the discharge

of water from the surface water management system will be created so that water can drain by gravity and in a controlled manner to the swallow hole, to the eastern drainage ditch round Collyweston Great Wood which joins a tributary of the Wittering Brook and to the southern drainage ditch which joins a tributary of the Willow Brook.

- The rate at which water will leave the surface water management system will be constrained to a rate equivalent to the greenfield runoff rate or 2l/s/ha, whichever is larger, consistent with guidance so the risk of flooding downstream is minimised.
- The design rainfall event assumed for the purpose of the calculations presented in this report is the 1 in 30 year rainfall event plus a 20% allowance for climate change. The 20% central allowance for climate change is the potential increase in peak rainfall intensity specified in Environment Agency guidance for design allowances (reference 6) resulting from anticipated climate change during the period 2085 to 2115. The extreme rainfall event assumed for the purpose of the calculations presented in this report is the 1 in 100 year rainfall event plus a 40% allowance for climate change. The 40% upper end allowance for climate change is the potential increase in peak rainfall intensity specified in Environment Agency guidance for design allowances (reference 6) resulting from anticipated climate change during the period 2085 to 2115.
- A portion of the surface water discharge from the restored landform will be routed to the swallow hole consistent with pre-development conditions at the site. It is assumed that further infiltration based approaches for surface water attenuation in other areas of the site generally will not be appropriate following restoration due to the significant thickness of low permeability strata above the underlying aquifer.
- 4.6 Further information on the parameters and assumptions affecting the operation of the surface water management system are presented in Section
 5. The results of calculations to estimate the attenuation capacities necessary

in the individual basins is presented in Section 6. The results of calculations of the dimensions of perimeter ditches which will need to convey water from discharge points from the detention basins to the west to east crossing are presented in Section 7.

5. Restored site catchments and drainage constraints

5.1 The proposed restored site has been divided into seven catchments delineated based on the topographic restoration contours and the surface water drainage ditches draining the restored land to basins at the low point in each catchment as shown on Figure 4. The seven catchments are shown on Figure 5. The point of discharge of each of the seven catchments in summarised in the table below. The approximate areas of the catchments are presented in Table 1.

Catchments			
Catchment 1	Drains to basin C1 in the south east discharging to the permitted discharge point		
Catchment 2	Drains to basin C2 in the north west of the existing ENRMF site discharging to the swallow hole		
Catchment 3	Drains to basin C3 in the west discharging to the western drainage ditch which in turn discharges to the swallow hole via the west to east crossing		
Catchment 4	Drains to basin C4 in the west discharging to the western drainage ditch which in turn discharges to the swallow hole via the west to east crossing		
Catchment 5	Drains to basin C5 in the south west discharging to the drainage ditch to the south of the site		
Catchment 6	Catchment 6 Drains to basin C6 in the north discharging to the drainag ditch to the east of the site		
Catchment 7	Drains to basin C7 in the west discharging to the swallow hole via the west to east crossing		

5.2 The design of the proposed ditchcourse which will convey water from west to east across the proposed western extension to discharge into the swallow hole at the north western corner of the existing ENRMF site will be the subject of the results of further investigation. The ditchcourse will be constructed and will be designed to convey flows at the greenfield runoff rate for a 1 in 100 year event with an allowance for climate change as a minimum. The detail of the watercourse design will be agreed with the relevant planning authority following confirmation of the design of the crossing from the results of further investigation.

Pre-development greenfield runoff rates

- 5.3 The indicative surface water catchment of the site including areas which are external to the site and which may drain to the site has been delineated based on available topographical information as presented in Section 3. Calculations to determine the current greenfield surface water runoff rate from the catchments in the western extension have been carried out using the method presented in The Institute of Hydrology (IOH) document entitled "Flood estimation for small catchments" report number 124 dated 1994 (reference 7, the IOH 124 method). Consistent with guidance the Flood Estimation Handbook (FEH) rainfall intensity data has been used in the calculations. The greenfield surface water runoff rate for the mean annual flood (Qbar) has been calculated with a growth factor applied to calculated the 1 in 30year and the 1 in 100year greenfield runoff rates. The calculations are presented at Appendix D. The greenfield run off rates for the existing ENRMF are presented in the 2007 SWMP.
- The calculated Qbar using the IOH 124 method are all less than 2l/s/ha. For the purpose of the calculations a discharge limit of 2l/s/ha is assumed. Qbar calculations using the FEH statistical method have been carried out using the UKSUDS online tool for comparison with the IOH 124 results and the 2l/s/ha limit assumed. A HOST class number of 22 (Till, compacted head) has been selected for the site in the calculations. The results of the IOH 124 method and the FEH statistical method for the Qbar calculations using the UKSUDS online tool are presented at Appendix D together with a summary table of the results (Table D4). The 2l/s/ha limit has been selected as a conservative assumption given the known limitations of both the IOH 124 method and the FEH statistical method in respect of small catchments.

Permitted discharge

The permitted discharge from the site is an outfall from the south east pond (2007 SWMP) comprising a 225mm diameter pipe which discharges to the upstream point of a road culvert. It is calculated in the 2007 SWMP that with

no orifice control an outflow rate from the site for the critical 1 in 100 year return period storm would be approximately 110l/s. It is calculated in the 2007 SWMP that the downstream highway culvert would have the capacity to receive a discharge rate of over 500l/s from the site without being at risk of flooding. This is significantly greater than the 1 in 100 year return period storm outflow rate with no orifice control reported in the 2007 SWMP with a 40% upper end allowance for climate change of approximately 150l/s. The design of the permitted discharge point in the 2007 SWMP is such that the permitted discharge rate from the site is 50l/s.

Comparison of pre-development and restored catchments

As can be seen from the comparison in Table 1 similar areas of the predevelopment catchments and restored catchments discharge to the permitted discharge point, the eastern ditch, the swallow hole and the southern ditch.

6. Attenuation storage

- The discharges from the restored catchment areas will be controlled at the pre-development greenfield runoff rates or at 2l/s/ha, whichever is larger, consistent with guidance or at the permitted discharge rates such that there will be no increased flood risk downstream of the site as a result of the proposed development. The basins at the low point in each of the restored site catchments have been sized such that the capacity of the basins can store the amount of water it is necessary to attenuate so that the discharge from the basins is managed to the pre-development discharge rates or at the permitted discharge rate. Consistent with guidance FEH rainfall intensity data has been used in the calculations. Calculations to estimate the attenuation storage that will be created as a result of the construction of the attenuation basins as part of the restoration are presented at Appendix E.
- 6.2 The detention basins have been sized to accommodate the calculated 1 in 30 year return period storm with a 20% allowance for climate change with an additional 300mm freeboard based on the permitted discharge rate from catchment 1 and the 2l/s/ha discharge rate from all other catchments. The indicative capacity of the detention basins are presented on Figure 5. The detail of the detention basins in each area will be designed and agreed with the relevant planning authority before the development of each phase of the landfill. The calculated maximum attenuation storage needed in each catchment for a 1 in 100 year return period storm with a 40% allowance for climate change is presented in Table E15 at Appendix E. It is proposed that low bunding is formed round the attenuation basins such that the additional attenuation storage needed for the 1 in 100 year return period storm with a 40% allowance for climate change can be accommodated. The indicative bund round attenuation basin C1 is shown on Figure 5. The indicative height of the perimeter bunds needed round the attenuation basins is presented in Table E15 at Appendix E.

- 7. Calculation of the capacity of the proposed ditches for the conveyance of surface water
- 7.1 Consistent with the 2007 SWMP surface water ditches will be excavated into the restoration soils of the landfill to direct runoff to the attenuation basins with the indicative ditch section profile presented on Drawing 1621.SWM.10 of the 2007 SWMP (Appendix A). Intermediate ditches will be provided on the batter slopes to intercept and slow the rate of run off to reduce ravelling and the risk of erosion of the restoration soils and underlying cap.
- 7.2 It is proposed that surface water from detention basin C1 will discharge to the permitted discharge location in the south east of the site at the permitted discharge rate. It is proposed that surface water from detention basin C2 will discharge to the swallow hole at the 2l/s/ha discharge rate. It is proposed that surface water from detention basins C3 and C4 will discharge to the perimeter ditch at the 2l/s/ha discharge rate. Water in the perimeter ditch will convey water northwards to the west to east crossing in the central area of the site where it will eventually discharge to the swallow hole. It is proposed that surface water from detention basin C5 will discharge to the perimeter ditch at the 2l/s/ha discharge rate. Water in the perimeter ditch will convey water southwards and will discharge to the drainage ditch to the south of the site. It is proposed that surface water from detention basin C6 will discharge from the site to the drainage ditch along the eastern boundary of the western extension at the 2l/s/ha discharge rate. It is proposed that surface water from detention basin C7 will discharge at the 2l/s/ha discharge rate to the west to east crossing in the central area of the site where it will discharge to the swallow hole. The discharge from each of the catchment areas will be controlled in a similar manner to that set out in the 2007 SWMP with suitable flow control apparatus such as discharge pipes of an appropriate diameter at the outlet from the attenuation basins such that the rate at which water leaves the basins does not exceed the flow rate assumed in the calculations.

- 7.3 The western perimeter ditch which currently conveys water from off site to the southern culvert across the central area of the proposed extension and then to the swallow hole will also convey water from catchments 3 and 4 following restoration to the proposed watercourse crossing the site from west to east to discharge to the swallow hole. Prior to any development at the site these areas of the site drained directly to the area of the swallow hole from the site via field drains or drainage ditches internal to the existing ENRMF site as well as the western extension site. The western perimeter ditch which conveys water from off site to the southern drainage ditch will also convey water from catchment 5 following restoration to the southern drainage ditch. development these areas of the site drain directly to the southern drainage ditch from the site via field drains. Indicative calculations of the capacity of the western perimeter ditch to convey water to the west to east crossing and to the southern drainage ditch are presented at Appendix F and are described in this section. All other perimeter drainage ditches will convey water from similar drainage routes and at similar rates pre and post development.
- 7.4 The capacity of a drain to convey surface water has been calculated based on Manning's resistance equation which takes into account the dimensions, geometry and other characteristics of the drain. For the purposes of the calculations it is assumed that the drain will comprise an open ditch generally. Calculations of the flow capacity in the drain using Manning's resistance equations are presented in Table F1 at Appendix F. The calculation of the relevant Manning's roughness coefficient is presented in Table F2 at Appendix F.
- 7.5 Based on the calculations presented at Appendix F the perimeter ditch will have a flow capacity sufficient to convey the necessary quantity of surface water during the 1 in 100 year rainfall event plus a 40% allowance for climate change to the west to east crossing and to convey the necessary quantity of surface water during the 1 in 100 year rainfall event plus a 40% allowance for climate change to the southern drainage ditch. Suitable flow control apparatus will be constructed at the outlets from the detention basins in the restored

catchment areas such that the rate at which water enters the receiving drainage ditches from the site during the design storm event does not exceed the flow rates assumed in the calculations. It is anticipated that the locations of the ditches and surface water attenuation basins or detention basins may be refined following further investigations in the central area of the site where a proposed watercourse will convey water from west to east across the site to discharge into the swallow hole consistent with current routes of surface water flow.

The western perimeter drain discharges to a culvert beneath the southern track thence into the southern drain. The culvert comprises a 200mm diameter plastic pipe. Making assumptions about the fall of the pipe across the track based on the topographical survey and observations during a surface water features survey of the site in October 2019, the pipe has the capacity to convey at least twice the necessary quantity of surface water during the 1 in 100 year rainfall event plus a 40% allowance for climate change.

8. The maintenance and management of the surface water drainage system

- 8.1 Consistent with the LLFA guidance the drainage system in the restored areas shall be subject to regular maintenance to secure its efficient operation and the effective management of water.
- 8.2 During the operational period of the site including restoration operations Augean will maintain and manage the drainage system in the areas of the site where the operations being carried out affect the drainage system. In the parts of the extension area where landfill development has not yet commenced and where agricultural activities continue the responsibility for maintenance and management of the surface water drainage system will remain with the farmer until the landfill development commences and normal agricultural activities no longer are practicable.
- **8.3** Following restoration an agreed aftercare scheme will be in place which will include the maintenance and management of the surface water drainage system for an agreed period.
- **8.4** The principles on which maintenance and management will be based are set out below:
 - Regular inspections of the surface water drainage system will be undertaken. The purpose of the inspections will be to confirm the adequate performance of the drainage system, to identify operational problems and to facilitate planning of maintenance actions as necessary.
 - Insofar as it is practicable inspections of the surface water drainage system will be carried out in a range of weather conditions including during rainfall events.
 - Maintenance actions will be planned and implemented as necessary to facilitate the proper functioning of the drainage system.

- The planning and implementation of maintenance actions will take into account the protection of habitats and ecosystems as necessary.
- 8.5 Specific maintenance and management actions are likely to include but may not be limited to:
 - Removal of litter and debris from attenuation basins and ditches at the site as necessary.
 - Sediment management such as the removal of accumulated sediment in attenuation basins and the ditches as necessary.
 - Inspection and remedial maintenance of the flow control structures at the outlet of attenuation basins as necessary.
 - Grass cutting and other vegetation management such as pruning as necessary.
 - Control of weeds and invasive plants as necessary.
 - Repairing damage to ditches caused by erosion or other processes.

Management in support of the wider nature conservation objectives of the restored site are included in the ecological assessments presented in the Environmental Statement and associated schemes submitted in support of the DCO application.

8.6 The management regime will be updated as necessary as the operations and restoration works the subject of the approved aftercare scheme progress.

9. Conclusions

- 9.1 The post restoration 2021 SWMP is designed based on the principle that there will be no significant increase in surface water discharges from the site compared with the pre-development situation, hence no increased flood risk downstream of the site following restoration including during a 1 in 100 year rainfall event when a potential 40% increase in rainfall intensity as a result of climate change is taken into account.
- 9.2 The proposed restoration design incorporates areas designed to function as attenuation basins. The rate at which water will leave the attenuation basins will be controlled so that during extreme rainfall events a significant proportion of runoff will be retained to attenuate the runoff peak. On this basis the surface water attenuation function of the 2021 SWMP will be accomplished primarily by allowing water to accumulate in the basin areas temporarily during storm events and to be released from the basin areas in a controlled manner.
- 9.3 It is demonstrated in the 2021 SWMP that surface water can be managed on site without increased flood risk downstream of the site. The final details of the design of the drainage ditches and associated surface water attenuation basins will be agreed with the relevant planning authority prior to development of each landfill area.
- 9.4 The management and maintenance of the 2021 SWMP and the plan's capacity to facilitate water quality improvements is generally consistent with the existing surface water management plan.

10. References

- 1. https://www.gov.uk/guidance/flood-risk-and-coastal-change
- Northamptonshire Lead Local Flood Authority. 2017. Local Standards and Guidance for Surface Water Drainage in Northamptonshire. Version 1.3 dated August 2016 and updated in September 2017
- East Northamptonshire Council. 2020. Strategic Flood Risk Assessment (SFRA) Level 1. Review and update of 2011 Level 1 SFRA. FINAL SFRA update February 2020.
- Department for Environment, Food and Rural Affairs. 2015. Sustainable Drainage Systems. Non-statutory technical standards for sustainable drainage systems. Dated March 2015.
- 5. Landfill Guidance Group Industry Code of Practice no. LGG 116. 2018. Sizing of surface water management systems at landfill sites. Dated February 2018.
- https://www.gov.uk/guidance/flood-risk-assessments-climate-changeallowances#types-of-allowances and https://www.gov.uk/guidance/flood-andcoastal-risk-projects-schemes-and-strategies-climate-changeallowances#peak-rainfall-intensity-allowances accessed in April 2021
- 7. The Institute of Hydrology. 1994. Flood estimation for small catchments. Report number 124 dated 1994.
- 8. Flood Estimation Handbook Web Service https://fehweb.ceh.ac.uk/GB/map
- 9. National Coal Board. 1982. Technical management of water in the coal mining industry.
- 10. Highways Agency. February 2004. Drainage of runoff from natural catchments. Design manual for roads and bridges, Volume 4, Section 2, Part1. Report reference HA 106/04

11. United States Geological Survey. 1989. Guide for Selecting Manning's Roughness Coefficients for Natural Catchments and Floodplains. United States Geological Survey Water-Supply Paper 2339.

TABLES

Table 1
Surface water catchment areas

Catchment	Area draining to eastern drainage ditch ¹ (m ²)	Area draining to the swallow hole (m²)	Area draining to southern drainage ditch ² (m ²)	Area draining to permitted discharge point (m²)		
Predevelopment catchment						
Western extension						
North and eastern						
margin of the	49,650					
northern area						
South and western						
margin of the		155,100				
northern area and		133,100				
the central area						
Southern area			64,100			
Permitted ENRMF ³						
Northern catchment		67,000				
Southern catchment				257,200		
TOTAL	49,650	222,100	64,100	257,200		
Restored site						
Catchment 1				201,970		
Catchment 2		60,945				
Catchment 3		82,230				
Catchment 4		27,750				
Catchment 5			59,080			
Catchment 6	41,075					
Catchment 7		32,930				
Additional areas4	3,400	42,715	3,035	24,180		
TOTAL	44,475	249,055	62,115	226,150		

- Eastern drainage ditch round Collyweston Great Wood draining eastwards joining a tributary of the Wittering Brook.
- Southern drainage ditch draining eastwards and then south eastwards joining a tributary of Willow Brook
- Permitted ENRMF areas are taken from 2007 SWMP giving a total area of the existing ENRMF site of 324,200m². The updated area for the permitted ENRMF site is 317,600m² hence the slight discrepancy between the predevelopment and restored site catchments.
- Restored site additional areas comprise managed grassland standoff areas round the perimeter of the site and in the pipeline corridors and perimeter boundary areas. In general, these areas are at shallow topographical gradients with drainage ditches upgradient from these areas collecting the majority of surface water runoff from the site.

Table 2
Upstream catchment areas

Catchment upstream of the western extension	Area (m²)	Location to which the catchment area drains	
Area to the north west drains to the northern part of the northern area	43,900	To the eastern drainage ditch	
Area to the north west drains to south of the northern area and the central area	41,000	To the swallow hole	
Area to the south west drains to the central area	207,050	To the swallow hole	
Areas to the north west, west and south west drains to the west of the site	233,200	Drains to dolines to the west of site	
Area to the south west drains to southern area	7,750	To southern drainage ditch	

FIGURES

APPENDICES

MJCA

APPENDIX A SURFACE WATER MANAGEMENT PLAN DATED MAY 2007

Augean plc

Kings Cliffe Landfill

SURFACE WATER MANAGEMENT PLAN

May 2007

Client:

Augean plc

Project Title:

Surface Water Management Plan

Site:

Kings Cliffe LFS

Project No.

1621

Project Director:

John Marshall

Project Manager:

John Marshall

Egniol Consulting Ltd

Primtec House Hulme Lane Lower Peover Nr Knutsford Cheshire WA16 9QQ

Tel.

01565 723618

Fax.

01565 723945

Distribution:

Egniol Consulting Ltd - Lower Peover

(1 copy)

Augean

(5 copies)

Environment Agency

CONTENTS

		Page No.
1.0	INTRODUCTION	3
2.0	PRESENT SITUATION	5
3.0	SOURCES OF POLLUTION	7
4.0	PATHWAYS AND RECEPTORS	8
5.0	PROPOSED SURFACE WATER MANAGEMENT	9
6.0	MONITORING	15
7.0	CONCLUSION	18

3

APPENDICES

Appendix A – Estimation of Acceptable Runoff From Site

Percentage Runoff Calculations

Calculations to Determine Particle Settling Velocities

Rating for the orifice on Kings Cliffe South East Pond

- Appendix B Micro Drainage Output Northern Catchment
- Appendix C Micro Drainage Output Southern Catchment
- Appendix D Flood Analysis of Highway culvert
- Appendix E Micro Drainage Output Flood Analysis of Highway culvert
- Appendix F Baseline Monitoring Results
- Appendix G Drawing 1621.SWM.10 "Surface Water Management Outline Surface Water Drainage Proposals" (Post Restoration Contours)
- Appendix H Drawing 1621.SWM.11-"Surface Water Management Construction Details for NW Pond"
- Appendix I Drawing 1621. SWM.14 "Outfall Details for SE Pond"
- Appendix J Drawing 1621. SWM.24 "Progressive Waste Fill"

1.0 INTRODUCTION

- 1.1. Egniol Limited was commissioned by Wastego, now part of Augean plc, to prepare a surface water management (SWM) design and risk assessment for the Kings Cliffe Landfill Site (the Site). The site is licenced under the Pollution Prevention and Control (England and Wales) Regulations 2000 for co disposal of waste in Cells 1 and 2 and hazardous waste in Cells 3, 4 and 5. This report supports a variation notice application to the Environment Agency (EA).
- 1.2 The purpose of the assessment is to determine whether the site restoration proposals and surface water management design pose an unacceptable risk to surface and groundwater and whether proposed mitigation measures are sufficiently robust to reduce/control those risks to an acceptable level.
- 1.3 The report will review the present situation and assess the risks based on the progressive site development. The risk will be in the context of the source, pathway, receptor style of approach with appropriate engineering design to address it. Consideration is then given as to how the engineering measures are controlled and monitored for performance to ensure that they continue to meet site operations and environmental need.
- 1.4 Subsurface flow within the site, if any, has been ignored since this assessment deals purely with surface water runoff. The hydrogeological aspect of the site development is covered by Environmental Simulations International Ltd in a separate risk assessment.
- 1.5 Proposed discharge rates of runoff to off site are expressed in terms of "Greenfield" rates. There are calculations in Appendix A to identify how this rate has been computed as well as a prediction of the percentage runoff (PR) for the restored site.

The particle settlement calculations for the efficiency of the north and south ponds are also given in Appendix A.

1.6 Calculations for the predicted performance of the ditches and attenuation ponds have been produced using the Flood Studies Report in the MicroDrainage software.
The calculations are included in Appendix B and C.

2.0 PRESENT SITUATION

- 2.1 There is little active management of surface water runoff beyond the fence boundary at present. What is in place is a passive system of embankments along the whole of the eastern and part of the southern elevations and these jointly serve as visibility bunds to obscure site operations. Active landfilling operations are confined well within the site and road sweeping is carried out both on the public highway and the site access roads and weighbridge area.
- 2.2 The intermittent perimeter bund, nominally two metres high, on the southern and eastern boundaries from the wheelwash eastwards to the site entrance entraps surface runoff from the access road and the MRF area. There is a pond on the southern boundary that does not have an overflow but is monitored for level and has 600mm nominal freeboard to the southern boundary. The pond is used as a source for watering for dust suppression.
- 2.3 It is expected that the present system of surface water management for the southern catchment will be changed when the construction of the new lagoon to the south east corner replaces the present one on the southern boundary. The new lagoon will then be able to receive runoff from the rolling programme of restoration when this commences.
- 2.4 The eastern perimeter bund extends northwards from the site entrance and stands nominally 2 4 metres high above normal ground level and becomes part of the batter to Cell 2 at the north east corner of the site. Surface runoff along the eastern boundary is prevented from leaving the site by the bund. On the northern batter, proposals are in hand and discussed below, to entrap surface runoff before it reaches the site perimeter. This runoff will be directed westwards to the proposed settlement / attenuation pond to be constructed under the surface water management proposals.

- 2.5 There is no identified runoff from the western and south western horizons of the site as this is undeveloped.
- 2.6 At present surface water collecting within unlined cells is encouraged via grips to fall into a collection lagoon/sump located at the lowest point within this area. This provides initial storage capacity and settlement of suspended solids. A pump is used to pump water to the settlement pond on the southern boundary.
- 2.7 To minimise surface run off from the side-slopes into active landfill areas, temporary cut-off trenches can be provided as required to intercept the flow and route it to the perimeter cut-off ditches and thence to the above pond for settlement.

Ţ

1

1

3

1

1

ĵŝi S

]

4

3.0 SOURCES OF POLLUTION

- 3.1 The main sources of potential contamination are from the waste, site engineering/development, the drum storage / skip / lorry park area and the materials recycling facility (MRF). The surface water runoff from these areas is designed to be captured within the on-site drainage system.
- 3.2 The skip / lorry park / drum storage area presently consists of imported stone overlying compacted clay. There is no formal sub surface drainage system but ground levels trend northwards towards the centre of the site.
- 3.3 The general level of the limestone aquifer under the skip / drum storage area is 72mAOD and the ground level 83.5mAOD. The natural clay has a permeability of 1 x 10⁻⁵ m/s so a thickness of 11m or so provides a good level of protection to the limestone.
- 3.4 The northern catchment of the site comprises Cells 1 and 2 and has a steep batter on the northern site boundary. This potentially could shed polluted runoff off site. There are no receiving waters on this boundary and runoff tends to form localised pond areas. On the eastern horizon the cell batter runoff is contained by the visibility bund which is some 3 4 metres high at this point.

4.0 PATHWAYS AND RECEPTORS

4.1 The main receptors for any potential contamination are groundwater via the swallow hole to the north, the northern off site boundary along Cells 1 and 2 and the receiving watercourse in the valley to the south of the site.

Swallow Hole

132

灦

1

- 4.2 The swallow hole lies in woodland some 20m north (NGR 500470, 300240) of the north west corner of the site and provides a natural sink for pre development site runoff to issue directly to groundwater. Runoff from surrounding agricultural land already gravitates to the swallow hole via a system of field ditches.
- 4.3 The other pathway which could pose a risk to groundwater contamination here is from discrete seepage from peripheral ditches installed as part of the proposed surface water management scheme or overland flow from a proposed pond.

Northern Boundary - Cells 1 and 2

4.4 Runoff from the northern batter of Cells 1 and 2 is free to issue off site and could percolate into groundwater if the overburden soils of the aquifer are conducive to it.

Unnamed Watercourse, South of the Site

- 4.5 There is no direct connection with the watercourse and the site at present as the two are remote. It is proposed, however, under the surface water management plan to issue site runoff to it.
- 4.6 The watercourse issues to a road culvert and the capacity of this has been checked to confirm that flooding does not result under design operating conditions.

PROPOSED SURFACE WATER MANAGEMENT

- 5.1 The proposed surface water management system is shown on drawing 1621,SWM.10 in Appendix G. The site restored slopes will be configured into north and south catchment areas. These are referred to as such in the discussion below.
- The system will be progressively installed on completion of each cell. The 5.2 progression of cell construction and filling is shown on drawing 1621.SWM.24 in Appendix J. Surface water ditches will be excavated into the restoration soils to direct run-off into the main perimeter cut-off ditch. The ditch section profile is indicated on drawing 1621.SWM.10 in Appendix G and is integrated with the capping materials.
- Site restoration will generally consist of 1metre restoration soils overlying a 5.3 geomembrane/ clay liner. On the northern batter slopes, a drainage geocomposite with 1mm textured geomembrane clay liner is specified below the restoration soils.

Northern Site Catchment

The northern catchinent will issue into a pond in the north-west corner of the site. 5.4 The selected location of the proposed pond is ideal as regards its remoteness from working areas as this minimises the probability of accidental contamination. It is in close proximity to road access for service vehicles for the pumping station and overhead power supplies for the pump units. The pond elevation is also conducive to collecting runoff by offering a westerly outfall route from the restored slopes on Cells 1 and 2. An outfall to the east is not readily available. In contrast to these attributes there is the likelihood that the pond may, during its operation, contain contaminated water and this will be stored for assessment prior to licenced disposal. Since the pond will be lined with engineered clay, overtopping and overland routing of water to the swallow hole is the only available pathway of escape to

groundwater. Given the worst case scenario where the pumps fail during the critical 100 year return period storm, it is predicted that there would still be a 46 hour time lapse between failure of the pumps and overtopping of the lagoon. It is considered that this would be ample time to commission tankers onto site to draw down the water levels, restore power supplies or repair/reset stalled pumps. The risk of groundwater contamination via this pathway is therefore considered negligible.

- The pumping station will be subject to an annual maintenance agreement with a competent M&E Contractor and this will run for the life of the station. The agreement will stipulate the frequency of non reactive service inspections and the response times for reactive ones. A telemetry outstation will be provided in the pumping station kiosk and this will respond to a landline telephone designated by Augean. In the first instance, this will report faults to the maintenance contractor. The outstation will also have a dial up facility to enable interrogation of the stations' operational status by authorised parties.
- 5.6 Inlet ditches to the pond will be lined with engineered clay and constructed to CQA site standards, as will the ponds. Overtopping will occur at the pond before the ditch and this risk has been discussed and discounted earlier. The risk of contamination of groundwater is therefore considered to be negligible from this source.
- 5.7 A pumped outfall from the pond to the proposed south east pond and then to watercourse south of the landfill site will offer less contamination risk than an outfall to groundwater via the swallow hole to the north. The pumped outfall option has thus been selected for preference but both options have been reviewed for risk.
- In the pumped outfall scenario, to achieve a self-cleansing velocity in the rising main commensurate with a pipe diameter to resist blockage, it will be necessary for the outflow from the pond to exceed Greenfield Run-off. MicroDrainage calculations in Appendix E show that even for the critical 1 in 100 year return

period storm, this increased rate of pumping will not cause flooding downstream at the road culvert. The pond has therefore been sized on this rate. The north west pond and pumping station is shown on drawing 1621.SWM.11 in Appendix H.

- 5.9 The proposed pond will have a side slope no steeper than 1 in 3, a width to length ratio of 1 to 3 (recommended for optimum suspended sediment settlement) and a minimum freeboard of 600mm above design top water level. It will incorporate sufficient storage capacity to contain the inflow from the critical long duration storm of 1440minutes assuming that pump failure endures up to 24 hours.
- 5.10 The additional storage capacity provided as a safeguard against overtopping following pump failure, will also allow inflows to be safely contained within the pond so that the water quality can be monitored if pollution is suspected. If the water quality complies with the discharge consent, the pumps can then be reactivated to draw the water level back down and release it at a controlled rate to the south east pond. In normal operation, the pumping station would respond automatically to inflow from rainfall.
- 5.11 In the unlikely event that water sampling reveals substances outside prescribed limits, the water will be treated as leachate and processed at a licenced facility off site.
- 5.12 The inflow ditches to the pond will be lined with clay and dressed in topsoil with ryegrass seed to form a swale. When established, the grass will provide natural filtration and further attenuation. Stone pitching will be provided at the inlets and down the banking to avoid erosion and allow escape. The pond will be fenced and signs erected to warn of deep water.

Southern Site Catchment

- 5.13 The southern catchment will issue to the proposed south east pond see drawing 1621.SWM.14 in Appendix 1. It is sized to cater for a 1 in 100 year (1% probability) rainfall event and pass forward a controlled discharge to the upstream point of the road culvert. Calculations are included in the report to show that flooding of the culvert for events up to 1 in 100 years is avoided (see Appendix D and E).
- 5.14 The calculations further demonstrate that even without attenuation on site the highway culvert will not flood for the critical 1 in 100 year return period event. However, for the purpose of monitoring and controlling discharges from site a pond has been included in the surface water management of the site.
- 5.15 The outfall will comprise a 225mm diameter pipe laid under Licence in the highway verge to the receiving watercourse, where it will issue at NGR 501480 299360. With *no* orifice control over the 225mm diameter outfall pipe, there would be an outflow rate for the critical 1 in 100 year return period storm of approximately 11 x Greenfield Run-off (ie 11 x 10l/s). It has been calculated that the downstream highway would have the capacity to receive a discharge rate of greater than 50 x Greenfield Run-off from this pond without being at risk from flooding.
- 5.16 The size of the south east pond will be limited by the presence of the MRF building, the haul road and the minimum easement width for the water mains. Given that the discharge is increased to 5 x 'Greenfield Run-off', it will be possible to design the pond with 1 in 3 side slopes, however the restrictions on space mean that it will not be possible to design the pond to the recommended width to length ratio of 1 to 3.

- 5.17 Details for the rating curve of the orifice outlet and outflow rate are included in Appendix A as Calculation 4.
- 5.18 The capacity of the south east pond is 1506m3 between incoming invert level and top of bank. The volume used by the 1 in 100 year event is 954m3 so the volume available as freeboard is 552m3. The percentage available volume available for climate change and dilapidation is therefore 552/954 = 57%, ignoring the silt storage volume of 367m3. Silt will be removed for the base of the pond as part of the programmed maintenance regime under the surface water management plan.
- 5.19 Following a request from the EA, the performance of the south east pond has been verified to accommodate 80% of the surface water runoff volume produced by a 1 in 10 year storm of the critical duration 24hrs after it has been filled to design level. The pond is actually predicted to be empty after 960mins (16 hours) from the 100year event. This means that full capacity is available within 24hrs to cater for further events.
- 5.20 In the scenario of a more extreme event than 1 in 100 years, the runoff would back up the incoming ditches utilising available storage within them with a similar rise in the pond level. Out of bank flows will occur in the local ditches to the pond and the pond itself. If the event occurs while the site is still operational it is expected that flow routing will be towards the centre of the site. Should overtopping occur when the site is closed and fully restored, then flood routing will be confined to the south east corner of the site providing the visibility bund is retained.

Northern Slope at Cells 1 and 2

5.21 The northern batter slope is programmed to undergo reprofiling as part of the overall restoration. Under the SWM plan, a collector ditch will be incorporated into the reprofiled batter to prevent off site runoff and issue runoff to the proposed north west pond.

Technical Aspects of the SWM Design

- 5.22 The ditch sections in the SWM design are chosen to provide a minimum level of service of no flooding during a 1 in 10 year event. To reduce ravelling, and the risk of eroding the capping / liner, intermediate ditches will be provided on the batter slope. As the landform settles, ditches may need to be realigned to maintain gradient.
- 5.23 Design calculations in support of the proposed Surface Water Management Scheme are included in the Appendices. The settlement ponds have been designed in accordance with "Design of Flood Storage Reservoirs" published by CIRIA and discharge rates determined by use of the Flood Studies Report / Flood Estimation Handbook.
- 5.24 Construction of surface water management infrastructure will be subject to Construction Quality Assurance supervision to ensure that the Works are built in accordance with the Drawings

6.0 MONITORING

Baseline Monitoring at Existing Receptors

- Baseline monitoring has been carried out by recovering samples of water from the two obvious inlet points to the swallow hole and the reception point at the southern watercourse. The results are tabulated in Appendix F.
- 6.2 For both the present northern and southern issues into the swallow hole (sample location reference SW SWALL N and SW SWALL S), measured levels of 0.4mg/l Ammoniacal Nitrogen exceed DWS levels of 0.35mg/l. Samples recovered after implementation of the surface water management scheme from the proposed pond on the northern catchment will be compared against the baseline results for the issue into the swallow hole from the south.
- 6.3 The outfall for the southern and northern catchments is at the confluence of the watercourse as it leaves arable land and a roadside ditch accepting direct runoff from the carriageway (sample location reference SW Field RO and SW Road RO). Baseline sampling from the arable land reach of the watercourse has been undertaken on the 8th February and the 2nd and 24th March 2005. Samples of road runoff were recovered on the 14th and 19th October 2005.
- 6.4 Comparison has been made against Drinking Water Standards (DWS) in accordance with the Water Supply (Water Quality) Regulations 2000.

Arable Land Runoff

6.5 Conductivity is recorded (2 March 2005) as 2770µs/cm which is >1500µs/cm DWS. Cadmium is 0.001mg/l which is >0.1µg/l MRV but <0.005mg/l DWS (24 March 2005). Ammoniacal Nitrogen of 0.5mg/l is > DWS of 0.35mg/l (24 March

2005). Mecoprop of $0.186\mu g/l$ is $> 0.04\mu g/l$ MRV and the $0.1\mu g/l$ DWS (24 March 2005). All of the above determinations are in low concentrations.

Road Runoff

- 6.6 Baseline monitoring was undertaken in October 2005 when sufficient rainfall was evident to provide a sample. The results are included in Appendix F.
- 6.7 Ammoniacal Nitrogen is 0.5mg/l and <0.3mg/l which is close to DWS of 0.35mg/l. Mecoprop of <0.04μg/l is similar to the MRV of 0.04μg/l. All of the above determinations are low concentrations.

Future Monitoring

- 6.8 The ponds offer the opportunity to analyse stored water for potential contamination and it is proposed that sampling be undertaken on an initial two weekly basis to establish the quality of the first inflows. After this period a monthly programme can be initiated. This will allow the operator to classify whether the water lies within EA agreed threshold limits for its controlled disposal. Testing will be carried out in accordance with the Environmental Monitoring Plan.
- As an additional safeguard, routine walk over inspections will continue to be to alert to irregularities in the landform which could indicate the capping membrane to have ripped and any unusual discolourations on the landform which could indicate the presence of a contaminant. If a potential contamination hazard is identified, water samples will be recovered for testing in accordance with the Environmental Monitoring Plan.
- 6.10 The decision to pump runoff from the northern catchment does not offer an ideal, sustainable solution to dispose of rainfall since power usage is dictated by the vagaries of the weather. The choice of this option should, however, be viewed in

the context of the risk to groundwater against the capital and revenue cost of the station. To estimate the station cost, it is necessary to attempt a forecast of the likelihood that polluted flows may issue to it in the years to come against the residual risk when the station is decommissioned and flow is diverted to the swallow hole.

The purpose of the pumping station at the north western corner of the site is to 6.11 effect control over potentially contaminated surface water drainage from the landfill. There is a potential for contamination of surface water during the operational period and in the period following capping and restoration due to contamination of run off, perched leachate and erosion. As leachate collecting in the base of the cell is managed at a level several metres below ground level it does not present a risk to the surface water system. The installation of the landfill cap, placement of soils and the establishment of a vegetated surface will provide a barrier to contaminants and prevent erosion. The most active stage of biodegradation and settlement hence disturbance of the landfill surface occurs in the first five years after landfilling. It is anticipated that the landfill surface will become increasingly stable and the risk of significant contamination of surface water run-off will progressively reduce. Surface water draining from the northern part of the site will continue to be pumped to the south eastern lagoon until the quality of the drainage is consistently acceptable. At this time, subject to the agreement of the Environment Agency, the discharge from the north western pond will be diverted to the swallow hole.

7.0 CONCLUSION

- 7.1 This risk assessment examines the potential impact of contaminated surface water runoff from the site on the surrounding environment. It discusses the source, severity of the risk, the likelihood of it occurring and the protocol provided to contain it. Providing the routing of surface runoff and the containment of it is maintained then the sampling regime should adequately monitor the site generated flows.
- 7.2 The storage ponds represent an opportunity for intercepting potentially contaminated flows from escaping to the environment. In designing the ponds, careful consideration has been given to ensure that they are both adequate to afford protection against downstream flooding and sufficiently sized to allow a response to a pollution incident. The ponds also incorporate protective fencing and means of escape via hard paved inflow channels set at manageable gradients.
- 7.3 The ponds have penstock controls incorporated at the outlet. The flow control on the south east pond is a simple orifice plate which regulates discharge to prescribed limits. This can be removed by unbolting in the event of blockage. If desilting of the ponds is required, the penstock can be closed to prevent onward passage of silts to the outfall.
- 7.4 Settling of solids is a primary function of both the ponds and the geometry has been carefully configured to dissipate energy from incoming turbulent flow during storm events. The ponds are both to have at least one metre of water below the outlet level which will provide inertia to reduce inlet velocity. Sumps have been incorporated into the base to collect solids and aid removal.
- 7.5 Freeboard of 600mm for the 1 in 100 year event is provided to contain flows and safeguard against offsite flood routing.

- 7.6 Outflow through the northern pond will be controlled by a pumping station which will regulate the discharge to that required for self cleansing of the rising main. If desilting of the pond is required, the pump can be simply turned off and the silt withdrawn by a portable sludge pump into a bowser for licenced disposal. A similar procedure will be adopted for the south east pond once the outlet penstock is closed. Calculations are included in the Appendices to show that the receiving watercourse is adequate to accept the flow
- 7.9 Flood routing and the passage of contaminated water within final paved areas will be effectively curtailed by the use of ground profiles in the form of kerbs and highway ramps.
- 7.10 Testing of contained water in the surface water lagoons will be undertaken in accordance with the Environmental Monitoring Plan. Records of sampling data shall be available for scrutiny by the Environment Agency at all reasonable times to offer assurance that compliance to agreed discharge criteria is being adhered to. Sampling data will be sent the EA on a quarterly basis and non conformances sent immediately via a Schedule 1.

APPENDIX A

CALCULATIONS

CALCULATIONS 1 - ESTIMATION OF ACCEPTABLE RUN OFF FROM SITE

Northern Catchment

Determine Q (mean annual flood) using FSR for each catchment

From FSR Supplementary Report No 6,

 $Q = 0.00066 \text{ x AREA}^{0.92} \text{ x SAAR}^{1.22} \text{ x SOIL}^2$

Total contributing <u>AREA</u> = $6.7 \text{ ha} = 0.067 \text{ km}^2$

Kings Cliffe National Grid Ref - 500500E 300500N

From Fig 11 3.1 (S) \Rightarrow SAAR = 580inm

From Fig I 4.18 (S) \times S₁ = 100%

 $SOIL = \underbrace{0.15S_1 + 0.3S_2 + 0.45 S_3 + 0.45 S_4 + 0.5 S_5}_{S_1 + S_2 + S_3 + S_4 + S_5}$

SOIL = 0.15

Therfore $Q = 0.00066 \times 0.067^{0.92} \times 580^{1.22} \times 0.15^2$

 $Q_{NORTH} = 2.91 \text{ l/s}$

Southern Catchment

From FSR Supplementary Report No 6,

 $Q = 0.00066 \text{ x AREA}^{0.92} \text{ x SAAR}^{1.22} \text{ x SOIL}^2$

 $AREA = 0.2572 \text{ km}^2$

SAAR = 580mm

SOIL = 0.15

Therefore Q= $0.00066 \times 0.2572^{0.92} \times 580^{1.22} \times 0.15^2$

Using the southern catchment area, Qsouth = 10 l/s

CALCULATIONS 2 - PERCENTAGE RUN OFF CALCULATIONS

Calculate the predicted percentage run off for the restored site

From "Design of Flood Storage Reservoirs" (CIRIA)

 $PR_{RURAL} = SPR + DPR_{CWI} + DPR_{RAIN}$

Where SPR = $10 S_1 + 30 S_2 + 37S_3 + 47 S_4 + 53 S_5$

Restoration soils will be approximately 800mm deep over HDPE membrane or engineered clay cap.

T 4.5 (FSR Vol 1)

Drainage Group = 1 (Rarely waterlogged within 60cm) Depth to impermeable layer > 80cm Permeability Group above Imp layer = Medium Slope > 80

Therefore Soil Class = 2 so S2 = 100%

SPR = 30.1 = 30

 $DPR_{CWI} = 0.25 (CWI - 125)$

Kings Cliffe Grid Ref 500500E 300500N

From FSR Fig II 3.1 (S) SAAR = 580mm FSR Fig I 6.62 CWI = 47

Therefore $DPR_{CWI} = 0.25 (47 - 125) = -19.5$

 $\underline{DPR_{CWI}} = -19.5$

 $DPR_{RAIN} = 0.45 (P-40)^{0.7}$

Where P = Rainfall(in mm) for the design event For Kings Cliffe M5 - 60 = 20mm R = 0.42

Critical Duration = Time of Entry + Time of Flow

Maximum length of ditch to outfall = 500m Assume flow velocity in ditch of 0.4m/s Assume overland flow velocity of 0.1m/s

So Te = Distance from catchment boundary to furthest ditch Overland flow velocity

$$= 135m$$

0.1 x 60
Te = 22.5mins

$$Tc = Te + Tf$$

So Tc =
$$22.5 + \underline{500}$$
 = 43 mins 0.4×60

Critical Duration = 43 mins

M100 - 30	M100 - 60	M100 -120
0.8	1	1.6
1,99	2.03	1.95
	0.8	0.8 1 1.99 2.03

Therfore

$$M100 - 30 = 20 .0.8.1.99 = 32$$
 So $P_{30} = 32$ mm $M100 - 60 = 20 1.0.2.03 = 40.6$ So $P_{60} = 40$ mm

$$M100 - 120 = 20 .1.6 1.95 = 62.4$$
 So $P_{120} = 62mm$

So
$$DPR_{RAIN} = 0.45 (P - 40)^{0.7}$$

For
$$Tc = 60$$
mins, $DPR_{RAIN} = 0.45 (41-40)$

$$DPR_{RAIN} = 0.45$$

Therefore PR
$$_{60} = 30 + (-19.75) + 0.45$$

$$PR_{60} = 10.7\%$$

For
$$Tc = 30$$
 mins, $DPR_{RAIN} = 0$ (P<40)

So PR
$$_{30} = 30 + (-19.5) + 0$$

$$PR_{30} = 10.5\%$$

For Tc = 60 mins,
$$DPR_{RAIN} = 0.45 (40-40)^{0.7}$$

$$DPR_{RAIN} = 0$$

So PR
$$_{60} = 10.5\%$$

For Tc = 120 mins, $DPR_{RAIN} = 0.45 (62-40)^{0.7}$

 $DPR_{RAIN} = 3.91$

So $PR_{120} = 30-19.5+3.91$

PR 120= 14.41%

say

Percentage Runoff for the restored site = 12.5%

CALCULATIONS 3 - DETERMINING PARTICLE SETTLING VELOCITIES

Assess terminal velocity of settlement of fluvial deposits in balancing pond using "Design of Flood Storage Reservoirs" by CIRIA.

From para 6.5.1

The settlement velocity of a sphere of given diameter, d, is derived from the drag force, Cd and Reynolds Number, Re, expressed in two dimensional groups:-

$$\frac{Cd}{Re} = \frac{4}{3} \frac{((\rho_p - \rho)g\mu)}{\rho^2 - v_s^2} g\mu$$

Equation 6.2

Cd.
$$Re^2 = \frac{4}{3} (\rho(\rho_p - \rho) gd^2)$$

Equation 6.3

Where

 $g = gravitational acceleration 9.81 m/s^2$

μ= absolute viscosity of the fluid (Ns/m²)

 ρ_p = particle density (kg/m³)

 ρ = fluid density (kg/m³)

Assume the particle size will arise from use of the granular restoration soils. Also check the efficiency of the designed ponds to cater for clay content if the restoration soils are taken from soil arising from waste inputs.

So for restoration soils:-

μ metres	% Passing			
20	65			
60	100			

Where

< 2 µm is clay

2-6 μm is fine silt

6 -20 μm is medium size silt 20 - 60 μm is coarse silt

 $60-200 \mu m$ fine sand

Determine the particle settling velocity for $20\mu m$ particles settling in water at 20^{0} C. Assume a specific gravity of 2.4.

Check v_s for 20µm size particles;-

Cd.
$$Re^2 = \frac{4}{3} (\rho(\rho_p - \rho) gd^2)$$

Equation 6.3

$$= 0.076$$

From Fig 6.7 Re = 0.04

As Reynolds Number is < 1, Stokes Law is valid and settlement is in the laminar range.

So from Cd. $Re^2 = 0.076$

$$Cd = 47.5$$

And $\underline{v}_s = 2.6 \text{mm/s} (20 \mu \text{m particle})$

Similarly, \underline{v}_s for 60µm gives Re = 0.23 (laminar) and Cd = 38.94

and
$$v_s = 4.98 \text{nm/s}$$
 (60 µm particle)

Determine the trap efficiency of the North West Pond

From Design of Flood Storage Reservoirs Para 6.5.3

Trap efficiency =
$$\eta = \underline{\upsilon}_s \ \underline{t}_R$$

 d_1

where \underline{v}_{s} Settling velocity

 t_R = Mean hydraulic residence time

d₁ = Flowing layer mean depth of flood basin

Check n for 20 µm and 60 µm particles

For $20\mu m$, Volume = L x B x H

Size of pond at Bottom Water Level (BWL) is $161.38m^2$ and at Top Water Level (TWL) $305m^2$. Average surface area is $(305 + 161) 0.5 = 233 m^2$. The Pond has 1 in 3 side slopes.

Depth of pond for a 1 in 100 year event = TWL - BWL = 79.02 - 78.25 = 0.77m

At the 1 in 100 year event the pond is technically full plus the 1000mm freeboard.

Size of the pond at mid depth = 233m2

So volume = $233 \times 0.77 = 179 \text{m}^3$

Mean hydraulic residence time $t_R = \frac{\text{Vol}}{O}$

Where Q = steady state inflow / outflow. This is not feasible for attenuation ponds where inflow / outflow ratios will change, so use outflow rate.

So
$$t_R = \frac{179}{0.0147} = 12,176s = 3.38$$
 hours

Mean through flow velocity
$$V = \underline{L} = \underline{20m}$$

 $t_R = 12,176$
 $= 1.64 \times 10^{-3} \text{ m/s}$

for 20 μ m particles, where $v_s = 2.66$ mm/s

$$\eta = \underbrace{vs \ x \ t_R}_{d_1} \quad = \quad \underbrace{2.66 \ x \ 10^{-3} \ x \ 12176}_{0.77}$$

 $\underline{\eta} = 42$ Satisfactory

Therefore all of the remaining 20µm particles would be trapped in 1/42 the length of the ponds. The Erosamat lining and grass within the outfall ditches would entrap fluvial fine silts also.

Rating Curve for Orifice on Kings Cliffe South East Pond

Q = Cd A (2gH)*0.5

Cd	Α	2g	H	Qm3/s
0.6	0.0172034	19.62	0.2	0.020
0.6	0.0172034	19.62	0.4	0.029
0.6	0.0172034	19.62	0.6	0.035
0.6	0.0172034	19.62	0.8	0.041
0.6	0.0172034	19.62	1	0.046
0.6	0.0172034	19.62	1.2	0.050
0.6	0.0172034	19.62	1.4	0.054

The south east pond will operate as the table below. The 240min duration Winter event is the critical event for the catchment:

Rainfall Return Period and Orifice Outflow Rate - South East Pond

Return Period	1	5	10	30	50	100
Critical Storm	240 Winter	240 Winter	240Winter	240 Winter	240Winter	240Winter
Outflow (l/s)	33	39	42	46	47	50
Top Water Level (m))83.094	83.312	83.42	83.61	83.7706	83.845
Freeboard (mm)	1256	1038	930	739	644	505
On Site Flooding	None	None	None	None	None	None

The predicted top water level is 83.845mAOD and top of bank level 84.35mAOD

APPENDIX B

MICRODRAINAGE OUTPUT - NORTHERN CATCHMENT

Calculation Sheet

ne kontrologija. Severe ezerbek ezerbek kontrologija i kontrologija i kontrologija i kontrologija i kontrologi Poslogija izvoja izvoja izvoja i kontrologija i kontrologija i kontrologija i kontrologija i kontrologija i ko

		, У				Control of the Contro
Augeo	in .	Job No: 1621	Project: King	s Cliffe	SWW.	
Made by: Jenny	Mills	Date:	D5		Date:	Sheet No: B key A
Norther	n Colclin	ent			· · · · · · · · · · · · · · · · · · ·	
			en e			
n-sid			1			
Mibery	714	12 1:011	10010	A. Lore	1:00E 1:005 1:004 1:0	And the second second second second
A				1000	1-00 1-00 1 100-11-0	03
800 E 10		jankanija Lagranija lagranija				8 /8
m Go	Je	etaben				1 - 16
88			C = 7 - 100 = 3, 10 = 1			18 18
1			<u> </u>			
w 0			and the desired and the			
3.000						
						The second secon
FO 5	e pons	* 1 · · · · · · · · · · · · · · · · · ·				
		e de la companya de l				
, <u>.</u> .	• • •					
			- 3 -			
			- '			

Egniol Limited

The Felin

Bangor

LL57 4LH

Date Jan-05

File FSR REV J (09.09.05).SIM

Micro Drainage

Client: Waste Go

Project: King's Cliffe

Title: N. Ditch Network

Designed By JLM

Checked By

Simulation W.9.5

HOTELD HOTELS SEED THE SECTION AND A SECTION AS

- Terminos Estados de La Calenda de Calenda d

Network Details

* - Indicates pipe has been modified outside of WinDes's Storm/Foul & Schedules

Indicat	ies pipe	has been	modified	d outs:	ide of	WinDes's	Storm/Fo	ul & S	Schedul
PN	Length (m)	Fall (m)	Slope (1:x)	Area (ha)	T.E (min		k (mm)	Hyd Sect	Dia (mm)
1.000 1.001 1.002 1.003	50.00 50.00 50.00	0.120 0.130 0.120	23.6 416.7 384.6 416.7 384.6	0.133 0.016 0.024 0.013 0.004	0. 0. 3 0.	00 1 00 1 00 1	300.000 300.000 300.000 300.000 300.000	\/ \/ \/ \/	32 32 32
2.000 2.001 2.002	126.50 50.00 50.00	1.890	175.7 26.5 9.9	0.098 0.026 0.021	0.	00 1	300.000 300.000 300.000	\ <i>/</i> \ <i>/</i>	32 32 32
1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012	50.00 50.00 50.00 50.00 50.00 101.00 108.00 50.00	0.130 0.120 0.130 0.120 0.160 0.180 0.320 0.340 0.160	384.6 416.7 384.6 416.7 312.5 311.1 315.6 317.7 312.5	0.023 0.023 0.021 0.023 0.022 0.022 0.056 0.090	0.0 0.0 0.0 0.0 0.0 0.0	00 1 00 1 00 1 00 1 00 1 00 1	300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000	\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	32 32 32 32 32 32 32 32 32
3.000 3.001 3.002 3.003	65.00 75.00 70.00 90.00	0.200 0.600 2.200 5.000	325.0 125.0 31.8 18.0	0.024 0.022 0.033 0.071	5.0 0.0 0.0 0.0	0 1	300.000 300.000 300.000 300.000	\/ \/ \/.	32 32 32 32
PN				Dep 1	DS/CL (m)	DS/IL (m)	-	Ctrl No.	US/MH (mm)
1.000 1.001 1.002 1.003 1.004	2 82 3 82 4 83	2.160 81 2.040 81 1.910 81	.660 0. .540 0.	.005 8 .005 8 .005 8	32.160 32.040 31.910 31.790 31.660	81.660 81.540 81.410 81.290 81.160	0.005 0.005 0.005 0.005 0.005	3 3 3	3000 3000 3000 3000 3000
2.000 2.001 2.002	6 88	.590 88	.090 0.	005 8	88.590 86.700 81.660	88.090 86.200 81.160	0.005 0.005 0.005	3 3	3000 3000 3000
1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.012	7 81 8 81 23 81 23 81 23 81 23 80 23 80	.530 81 .410 80 .280 80 .160 80 .000 80 .820 80	.030 0. .910 0. .780 0. .660 0. .500 0. .320 0.	005 8 005 8 005 8 005 8 005 8 005 8	1.530 1.410 1.280 1.160 1.000 0.820 0.500 0.160 0.000	81.030 80.910 80.780 80.660 80.500 80.320 80.000 79.660 79.500	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	3 3 3 3 3 3 3 3 3	3000 3000 3000 3000 3000 3000 3000 300
3.000 3.001 3.002 3.003	23 87 23 87	.800 87. .200 86.	300 0.0 700 0.0	005 81 005 81	7.800 7.200 5.000 0.000	87.300 86.700 84.500 79.500	0.005 0.003 0.005 0.005	3333	3000 3000 3000 3000

		entre et entre de la lacalitation de la constant de
Egniol Limited		Page 2
The Felin	Client: Waste Go	
Bangor	Project: King's Cliffe	
LL57 4LH	Title: N. Ditch Network	
Date Jan-05	Designed By JLM	
File FSR REV J (09.09.05).SIM	Checked By	
Micro Drainage	Simulation W.9.5	

Network Details

PN	Lengt (m)	h Fall (m)	Slope		T.E. (mins)	Rain Pro	k (mm)	Hyd Sect	Dia (mm)
1.014 1.015 1.016	10.0 1.0 760.0	0.000	30000	.0 0.000	0.00 0.00 0.00) 1	300.000 0.006 0.006	\/ o o	32 225 150
PN	USMH No.	US/CL (m)	US/IL (m)	US/Dep (m)	DS/CL (m)	DS/IL (m)	DS/Dep (m)	Ctrl No.	US/MH (mm)
1.014	23	80.000	79.500 78.250	0.005	80.000	78.250	1.255	3	3000
1.015	23	80.000	77.300	1.525 2.550	87.525	78.250 69.975	1.525 17.400	3 5	1200 1800

Egniol Limited		Page 1
The Felin	Client: Waste Go	
Bangor	Project: King's Cliffe	
LL57 4LH	Title: N. Ditch Network	
Date Jan-05	Designed By JLM	
File FSR REV J (09.09.05).SIM	Checked By	
Micro Drainage	Simulation W.9.5	

On-Line Controls (Non Return Valve)

us/pn	Volume (m³)	Ctrl MH Name	us/pn	Volume (m³)	Ctrl MH Name	US/PN	Volume (m³)	Ctrl MH Name
1.000	65.532	2	1.005	24.252	7	1.013	24.252	23
1.001	24.252	3	1.006	24.252	8	3.000	31.992	23
1.002	24.252	4	1.007	24.252	23	3.001	37,152	23
1.003	24.252	5	1.008	24.252	23	3.002	34.572	23
1.004	24.252	6	1.009	24.252	23	3.003	44.892	23
2.000	63.726	6	1.010	27.348	23	1.014	4.076	
2.001	24.252	6	1.011	50.568	23			
2.002	24.252	6 إ	1.012	54.180	23			

On-Line Controls (Pump)

US/PN	Volume	Ctrl	Invert	Headloss	Flow
	(m³)	MH Name	(m)	(m)	(m³/s)
1.015	0.040	23	77.300	0.20 0.40 0.60 0.80 1.00 1.40 1.80 2.20 2.60 3.00	0.0168 0.0176 0.0184 0.0192 0.0200 0.0217 0.0233 0.0247 0.0260 0.0270

Egniol Limited		Page 2
The Felin Eangor LL57 4LH	Client: Waste Go Project: King's Cliffe Title: N. Ditch Network	Misero
	Designed By JLM Checked By	Drainace
Micro Drainage	Simulation W.9.5	

Storage Pond at pipe 1.015 USMP

Storage Pond Invert Level (m) 78.250

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.0 0.4 0.8 1.2 1.6 2.0	147.0 227.0 327.4 426.2 536.6 658.6	2.8 3.2 3.6	658.6 658.6 658.6 658.6 658.6	5.2 5.6 6.0 6.4	658.6 658.6 658.6 658.6 658.6	7.6 8.0 8.4 8.8	658.6 658.6 658.6 658.6 658.6	9.6 10.0	658.6 658.6

APPENDIX C

MICRODRAINAGE OUTPUT - SOUTHERN CATCHMENT

Calculation Sheet

Client: Augean	Job No: 1621	Project:	Cliffe SWH		
Made by: Jenny Mills	Date:	Checked by:		Date:	Sheet No:
Southern Catch	ment	1.0041.003	6.002		
0	005 2006	2004 to 85	300 S	E pond	
Pumpe	d from fro	m New Pond	1-021 OFFACE	-1.023 control.	
		April 1995			io walerause

Egriol Limited		Page 1
The Felin	Client: Augean	
Bangor	Project: King's Cliffe	
LL57 4LH	Title: Southern	
Date Apr-05	; Designed By JM	
File FSR REV J 5 X GF	(07 Checked By	
Micro Drainage	Simulation W.9.5	

Network Details

* - Indicates pipe has been modified outside of WinDes's Storm/Foul & Schedules

PN	Lengt	h Fal		Slope (1:x)	Area (ha)	T.E. (mins)	Rain Pro	k (mm)	Hyd Sect	Dia (mm)
1.000 1.001		0.1	.70	295.6 294.1		12.00 0.00	1 1	300.000 300.000	\/	32 32
1.002				100.0		0.00	1	300.000	\/	32
1.003 1.004				166.7 71.4		0.00	<u>1</u> 1	300.000	\/	32 32
1.004				333.3		0.00	1	300.000	\\	32 32
1.006				390.9		0.00	1	300.000	Ϋ́	32
1.007				386.7		0.00	1	300.000	\/	32
1.008				400.0		0.00	1	300.000	\/	32
1.009 1.010				388.4 408.0	0.048 0.058	0.00 0.00	<u>1</u> 1	300.000	\/	32 32
1.010				285.7	0.076	0.00	1	300.000	V	32
1.012				437.5	0.112	0.00	1	300.000	Ÿ	32
1.013				147.7	0.135	0.00	1	300.000	\/	32
1.014	90.0			300.0	0.057	0.00	1	300.000	\/	32
1.015				80.0	0.049	0.00	<u>1</u> 1	300.000	\/	32 32
1.016 1.017				140.0	0.060 0.078	0.00	1	300.000	\/	32 32
1,018				400.0	0.064	0.00	1	300.000	Ϋ́	32
1.019	100.0	0 0.2		400.0	0.037	0.00	1	300.000	\/	32
1.020	25.0	0.0	62	403.2	0.006	0.00	1	0.060	0	300
2.000	73.0			365.0	0.037	10.00	1	300.000	\/	32
2.001 2.002	51.0 100.0			392.3 270.3	0.029 0.050	0.00	<u>1</u> 1	300.000	\/	32 32
DN	USMH I No.	US/CL (m)		m)	US/Dep (m)	DS/CL (m)	DS/IL (m)	DS/Dep (m)	Ctrl No.	US/MH (mm)
1.000	1 9	90.900	90	.400	0.005	90.670	90.170	0.005		3000
1.001		90.670		.170	0.005	90.500	90.000			3000
1.002		90.500		.000	0.005	90.000	89.500	0.005	-	3000
1.003 1.004		90.000 39.700		.500 .200	0.005 0.005	89,700 89.000	89.200 88.500	0.005 0.005		3000 3000
1.005		39.000		.500	0.005	88.850	88.350	0.005		3000
1.006		88.850		.350	0.005	88.740	88.240	0.005		3000
1.007		38.740		.240	0.005	88.590	88.090	0.005		3000
1.008		38.590		.090	0.005	88.340	87.840	0.005		3000
1.009 1.010		38.340 38.080		.840 .580	0.005 0.005	88.080 87.830	87.580 87.330	0.005 0.005		3000 3000
1.010		37.830		.330	0.005	87.480	86.980	0.005		3000
1.012		37.480		. 980	0.005	87.160	86.660	0.005		3000
1.013		37.160	86.	. 660	0.005	86.300	85.800	0.005		3000
1.014		6.300		. 800	0.005	86.000	85.500	0.005		3000
1.015		36.000		. 500	0.005	85.000	84.500	0.005		3000
1.016 1.017		35.000 34.500		. 500 . 000	0.005 0.005	84.500 84.300	84.000 83.750	0.005 0.055		3000 3000
1.018		84.300		.750	0.055	84.300	83.500	0.305		3000
1.019		4.300		500	0.305	84.500	83.250	0.755		3000
1.020	7 8	4.500	83.	. 250	0.950	84.350	83,188	0.862		3000
2.000		0.700		200	0.005	90.500	90.000	0.005		3000
2.901 2.992		90.500 90.370		.000 .870	0.005 0.005	90.370 90.000	89.870 89.500	0.005 0.005		3000

Egniol Limited The Felin

Bangor LL57 4LH

Date Apr-05

Micro Drainage

File FSR REV J 5 X GF

Client: Augean Project: King's Cliffe Title: Southern Designed By JM

Checked By
Simulation W.9.5

(07..

Network Details

PN	Length (m)	n Fall (m)	Slope (1:x)	Area (ha)	T.E. (mins)	Rain Pro	k (mm)	Hyd Sect	Dia (mm)
2.003 2.004 2.005 2.006 2.007 2.008	70.0 60.0 93.0 90.0 115.0 105.0	0 0.400 0 1.500 0 1.200 0 0.200	0 150.0 0 62.0 0 75.0 0 575.0,	0.045 0.042 0.048 0.066 0.059 0.020	0.00 0.00 0.00 0.00 0.00	1 1 1	300.000 300.000 300.000 300.000 300.000 300.000	\/ \/ .\/ .\/	32 32 32 32 32 32 32
3.000 3.001 3.002 3.003 3.004 3.005	62.0 73.0 81.0 55.0 105.0	1.00 00 0.70 00 0.40 00 1.10	0 73.0 0 115.7 0 137.5 0 95.5	0.028 0.050 0.068 0.118 0.201 0.158	9.50 0.00 0.00 0.00 0.00 0.00	1 1 1 1 1	300.000 300.000 300.000 300.000 300.000 300.000	\/ \/ \/ \/	32 32 32 32 32 32 32
2.009	80.0	0 0.40	0 200.0	0.055	0.00	1	300.000	\/	32
4.000 4.001 4.002 4.003	25.0 15.0 25.0 120.0	0.05 0.10	0 300.0 0 250.0	0.010 0.009 0.010 0.015	18.00 0.00 0.00 0.00	1 1 1	300.000 300.000 300.000 300.000	\/ \/ \/	32 32 32 32
2.010	80.0	00 1.61	2 49.6	0.022	0.00	1	0.060	0	300
1.021	12.0	0.03	0 399.9	0.005	0.00	1	300.000	\/	32
5.000	50.0	00.30	0 166.7	0.028	18.00	1	300.000	\/	32
PN	USMH No.	US/CL (m)	US/IL (m)	US/Dep (m)	DS/CL (m)	DS/IL (m)	DS/Dep (m)	Ctrl No.	US/MH (mm)
PN 2.003 2.004 2.005 2.006 2.007 2.008	No. 11 11 11 11		•				(m) 0.005 0.005 0.005 0.005 0.505 0.505	No.	(mm) 3000 3000 3000 3000 3000 3000
2.003 2.004 2.005 2.006 2.007	No. 11 11 11 11 11	(m) 90.000 89.400 89.000 87.500 86.800	(m) 89.500 88.900 88.500 87.000 85.800	(m) 0.005 0.005 0.005 0.005 0.505	(m) 89.400 89.000 87.500 86.800 86.600	(m) 88.900 88.500 87.000 85.800 85.600	(m) 0.005 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005	No.	(mm) 3000 3000 3000 3000 3000
2.003 2.004 2.005 2.006 2.007 2.008 3.000 3.001 3.002 3.003 3.004	No. 11 11 11 11 12 13 16 16 16 16	(m) 90.000 89.400 89.000 87.500 86.800 86.600 91.500 91.000 90.000 89.300 88.900	(m) 89.500 88.900 88.500 87.000 85.800 85.600 91.000 90.500 89.500 88.800 88.400	(m) 0.005 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005	(m) 89.400 89.000 87.500 86.800 86.600 86.200 91.000 90.000 89.300 88.900 87.800	(m) 88.900 88.500 87.000 85.800 85.600 85.200 90.500 89.500 88.800 88.400 87.300	(m) 0.005 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005 0.005 0.005	No.	(mm) 3000 3000 3000 3000 3000 3000 3000
2.003 2.004 2.005 2.006 2.007 2.008 3.000 3.001 3.002 3.003 3.004 3.005	No. 11 11 11 11 12 13 16 16 16 16 16	(m) 90.000 89.400 89.000 87.500 86.800 86.600 91.500 91.000 90.000 89.300 88.900 87.800	(m) 89.500 88.900 88.500 87.000 85.800 85.600 91.000 90.500 89.500 88.800 88.400 87.300	(m) 0.005 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005 0.005	(m) 89.400 89.000 87.500 86.800 86.600 86.200 91.000 90.000 89.300 88.900 87.800 86.200	(m) 88.900 88.500 87.000 85.800 85.600 85.200 90.500 88.800 87.300 85.200 84.800 88.25 88.20 88.20 88.20	(m) 0 0.005 0 0.005 0 0.505 0 0.505 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.505 0 0.505	No.	(mm) 3000 3000 3000 3000 3000 3000 3000
2.003 2.004 2.005 2.006 2.007 2.008 3.000 3.001 3.002 3.003 3.004 3.005 2.009 4.000 4.001 4.002	No. 11 11 11 11 12 13 16 16 16 16 17 18 19 20	(m) 90.000 89.400 89.000 87.500 86.800 91.500 91.000 90.000 89.300 88.900 87.800 86.200 88.850 88.750 88.750	(m) 89.500 88.900 88.500 87.000 85.800 85.600 91.000 90.500 89.500 88.800 87.300 85.200 88.350 88.250 88.250	(m) 0.005 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	(m) 89.400 89.000 87.500 86.800 86.600 86.200 91.000 90.000 89.300 87.800 86.200 85.800 88.750 88.700 88.700 88.600 85.800	(m) 88.900 88.500 87.000 85.800 85.600 85.200 90.500 88.400 87.300 85.200 84.800 88.25 88.20 82.10 84.80	(m) 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	No.	(mm) 3000 3000 3000 3000 3000 3000 3000
2.003 2.004 2.005 2.006 2.007 2.008 3.000 3.001 3.002 3.003 3.004 3.005 2.009 4.000 4.001 4.002 4.003	No. 11 11 11 11 12 13 16 16 16 16 17 18 19 20 21	(m) 90.000 89.400 89.000 87.500 86.800 86.600 91.500 91.000 90.000 89.300 88.900 87.800 86.200 88.850 88.750 88.750 88.750 88.700	(m) 89.500 88.900 88.500 87.000 85.800 85.600 91.000 90.500 89.500 88.800 87.300 85.200 88.350 88.250 88.250 88.100	(m) 0.005 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	(m) 89.400 89.000 87.500 86.800 86.600 86.200 91.000 90.000 89.300 87.800 86.200 85.800 88.750 88.700 88.700 85.800	(m) 88.900 88.500 87.000 85.800 85.600 85.200 90.500 88.800 87.300 85.200 84.800 88.25 88.20 84.80 83.18	(m) 0.005 0.005 0.005 0.505 0.505 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	No.	(mm) 3000 3000 3000 3000 3000 3000 3000

Egniol Limited The Felin Page 3 Client: Augean Project: King's Cliffe Title: Southern Bangor LL57 4LH Date Apr-05 Designed By JM Checked By Simulation W.9.5 File FSR REV J 5 X GF (07....

Network Details

Micro Drainage

PN	Length (m)	Fall (m)	Slope (1:x)	Area (ha)	T.E. (mins)	Rain Pro	k (mm)	Hyd Sect	Dia (mm)
5.001 5.002	35.00 125.00		233.3 34.8	0.015 0.018	0.00 0.00	<u>1</u> 1	300.000 0.060	\/	32 300
1.022	12.00	0.030	400.0	0.099	0.00	1	0.060	0	300
6.000 6.001	70.00 100.00	0.200 0.250	350.0 400.0	0.034 0.260	18.00 0.00	1 1	300.000 300.000	\/	32 32
1.023 1.024 1.025	10.00 200.00 250.00	0.105 7.000 8.750	95.2 28.6 28.6	0.000 0.000 0.000	0.00 0.00 0.00	1 1 1	0.060 0.060 0.060	0 0	225 225 225
DN '		•	S/IL ((m)	JS/Dep (m)	DS/CL (m)	DS/IL (m)	DS/Dep (m)	Ctrl No.	US/MH (mm)
5.001 5.002			6.900 6.750	0.005 0.200	87.250 84.350	86.750 83.158	=		3000 3000
1.022	27 84	.350 83	3.158	0.892	84.350	83.128	0.922		3000
6.000 6.001			4.300 4.100	0.005 0.005	84.600 84.350	84.100 83.850	0.005 0.005		3000 3000
1.023 1.024	31 84	.000 82	2.500 2.395 5.395	1.625 1.380 1.980	84.000 77.600 84.000	82.395 75.395 66.645	1.380 1.980 17.130	1	3000 3000 1500

to the contract of the contrac	and the second of the second o	
Egniol Limited	***************************************	Page 1
The Felin	Client: Augean	[10]
Bangor	Project: King's Cliffe	
LL57 4LH	Title: Southern	
Date Apr-05	Designed By JM	
File FSR REV J 5 X GF	(07 Checked By	
Micro Drainage	Simulation W.9.5	

On-Line Controls (Orifice)

us/pn			Coef of Contraction
	0.636 50.052	82.500 82.500	0.600 0.600

Egniol Limited		Page 2
The Felin	Client: Augean Project: King's Cliffe	
Bangor	Project: King's Cliffe	
LL57 4LH	Title: Southern	
Date Apr-05	Designed By JM	
File FSR REV J 5 X GF (07	Checked By	
Micro Drainage	Simulation W.9.5	

Storage Pond at pipe 1.023 USMH 30

Storage Pond Invert Level (m) 82.500

Depth	Area	Depth	Area	Depth (m)	Area	Depth	Area	Depth	Area
(m)	(m²)	(m)	(m²)		(m²)	(m)	(m²)	(m)	(m²)
0.0 0.4 0.8 1.2 1.6 2.0	469.6 598.4 740.3 892.6 1054.3 1225.4		1225.4 1225.4 1225.4 1225.4 1225.4 1225.4	•	1225.4 1225.4 1225.4 1225.4 1225.4 1225.4	8.0 8.4 8.8	1225.4 1225.4 1225.4 1225.4 1225.4 1225.4	9.6 10.0	1225.4 1225.4

APPENDIX D

FLOOD ANALYSIS OF HIGHWAY CULVERT

Calculation Sheet

3		• ,	* :-	7	PILLOIT
Client: Augreon	Job No: 162\	Project:	Kingle 1990		
Made by:	Date:	शंद		Date:	Sheet No:
H. girmay sid	wert				
	63-7 7		544 		
	85. <u>82.1</u>		60.52		
	E. C.		P. C. A.		

S = (66.03-65.89) | 16.3 : 0.0036

66-03

truck token from Doug No. 1821 SPI 14

Title: Table 1 - Hydraulic Analysis of Highway culvert Client: Augean Job: King's Cliffe SWM

Manning's equation, Q = A/n $\mathbb{R}^{2/3} \, \mathbb{S}^{1/2}$

-		2.2.2				,	-	,	17.	77	7				7	,		·	***				4
Q max	1/8		500	583	523	473	408	497	437	392	355	306	331	291	261	236	204	166	146	131	118	102	
Q max	m³/s	2000	0.0027	0.5826	0.5229	0.4727	0.4076	0.4970	0.4370	0.3922	0.3546	0.3057	0.3313	0.2913	0.2614	0.2364	0.2038	0.1657	0.1457	0.1307	0.1182	0.1019	
% blocked			> 0	0	0	0	0	25	25	25	25	25	50	50	50	50	50	7.5	75	75	75	75	
ø	m³/s	70000	0.0027	0.5826	0.5229	0.4727	0.4076	0.6627	0.5826	0.5229	0.4727	0.4076	0.6627	0.5826	0.5229	0.4727	0.4076	0.6627	0.5826	0.5229	0.4727	0.4076	
L		0.0407	171000	0.0145	0.0161	0.0178	0.0207	0.0127	0.0145	0.0161	0.0178	0.0207	0.0127	0.0145	0.0161	0.0178	0.0207	0.0127	0.0145	0.0161	0.0178	0.0207	
Ą	mm	7.	5 6	3.0	6.0	15.0	30.0	1.5	3.0	6.0	15.0	30.0	1.5	3.0	6.0	15.0	30.0	1.5	3.0	6.0	15.0	30.0	
S		88000	00000	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	9800.0	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	0.0086	
쏜		0.1575	0.1810	0.1373	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	0.1575	
Ь	Ε	1 9792	4 0700	1.91.92	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	1.9792	
A	m ²	0.3447	0.2447	0.0117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	0.3117	
ď	E	0.63	630	20.0	0.03	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	
Condition of Highway culvert		well noinfed brickwork (good) 0 % blocked	(well pointed brickwork (normal) 0 % blocked	well pointed brickwork (non), 0 % blocked	well politied blickwolk (poor), 0 % blocked	loid, in need of pointing (normal), 0 % blocked	old, in need of pointing (poor), 0 % blocked	well pointed brickwork (good), 25 % blocked	well pointed brickwork (normal), 25 % blocked	well pointed brickwork (poor), 25 % blocked	old, in need of pointing (normal), 25 % blocked	old, in need of pointing (poor), 25 % blocked	well pointed brickwork (good), 50 % blocked	well pointed brickwork (normal), 50 % blocked	well pointed brickwork (poor), 50 % blocked	old, in need of pointing (normal), 50 % blocked	old, in need of pointing (poor), 50 % blocked	well pointed brickwork (good),75 % blocked	well pointed brickwork (normal), 75 % blocked	well pointed brickwork (poor), 75 % blocked	old, in need of pointing (normal), 75 % blocked	old, in need of pointing (poor), 75 % blocked	

d diameter

A cross sectional area
P welled perimoter
R hydraulic radius
S slope
ks Nikuradse equivalent sand rougness size
n Manning's roughness coefficient

Client: Augean

Job: King's Cliffe SWM

Title: Table 2 - Unit Hydrograph at Highway culvert - Flow from field

Client: Augean

PR (%)

\$1085 (m/km)

13,379

31.111

Job: King's Cliffe SWM

Title: Table 3 - Unit Hydrograph at Highway culvert - Flow from Highway to North

Client: Augean

Job: King's Cliffe SWM

Title: Table 4 - Unit Hydrograph at Highway culvert - Flow from Highway to South

L Innellynrogr	या)। स्त्रीकाति।				
<u>Únit P.v.</u>	kogradk ()				
FSR In	put	FEH Input		Heauts	Бгора ,
F <u>S</u> R - Method				ا احتمادی حسانها	
Region Engla	nd and Wales	Main Channel Length [m]	310,000	CWI	82.600
M5-60	20.000	H(85%) (m)	71.500	Urban	0.660
:Ratio R	0.420	Map] H(10%)(m)	68,000	SPR	10.000
		Area (ha)	0.080		
Areal Reduction	1.000	SAAR (mm)	580	LAG (hrs)	0.000
Factor	1.000				a de la companya de l
				<u>C</u> .	siculate

100 a 100 a

		Transport de la company							2	The state of the s	
				Ç	alculation	1 Sheet) gmio	oli
rest of the second	Client:			Projec	t:	P**	Alaro				
Bi Carlo	Augean		1621		kingo l		·	Date		Sheet No:	
era l	Made by:		Date:	OG	Checked by:			Baix	••	HI R	Avs
- 572 M 127 M		<u>-</u> -				(. 1	<u> </u>	
eri d	Accessment	of the	e most	Sic	gnifica	nt are		tribut	ang bi	2 1/Our	200
yrii	و منظم المستخدم المست	.u.									
* 13 6	se Dadro	rge con		5	x GFR	: 5	10 d	G.			
i i i	Return Pe	and and			· ()	5	10	30	50	100	
		·····	<u> </u>		<u></u>			45	47	50 240 Win	
	1	,	10 (2-000)	.	1	(1			i ,	
1	har outfloor	Field ((1.000)		12 pm	1440 EM	1940 Sor	4 7 1440 Sun	1640 Smil	94.	
		tighwa _t	3 (3.000	3)	<u>}</u>	: 3	3	. 2 	() (O) Sastin	5 ·	
. D		neen noord and a second						60 Sum Fæld		FEID	
	C.rrler co.l				1	:		•	** **		- 1
	Highway outvert	Cribical			SHO MIL	. 240 Wr		-	1	m 1440s	₩ .Αξξ ,
	(1·05%)	HOX. O	ultflow.		34	42	45	86	105	138	
ः जी	1	() =	Micro D	COu	near l	elerer	nce No))	i		
1 1 1 1 1	(MM)	()	7110100	. 4 (. J	•					
3 1 12	(POLC)										
4 5 12 1 1 4	27				56,	/ His	Picare!				
i (u	SE PORD (Morth)										
nia sa		8 8									
Lang.											
		1.000 1.001 1.002 1.003									
Richard Control of the Control of th		(FIEICI)									
Res () () () () () () () () () (The second of th			34					
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)											
English						95					

APPENDIX E

MICRODRAINAGE OUTPUT
- FLOOD ANALYSIS OF HIGHWAY CULVERT

Egniol Limited		Page 1
The Felin	Client: Augean	
Bangor	Job: King's Cliffe SWM	
LL57 4LH	Title: Flow in culvert	
Date Jan-06	Designed By JLM	
File 10.01.06, 1 yr RP, 240	Checked By	
Micro Drainage	Simulation W.9.5	

Return Period (year)	1	Analysis Time Step	Fine
Storm Duration (mins)	240	DVD Status	OFF
Profile Type	Winter	Inertia Status	OFF
Margin for Flood Risk warning (mm)	200		

PN	Water Lev. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity	Overflow (1/s)	Pipe Flow (1/s)	Status
1.000	`74.052	-0.443	0.000	0.00	0	3	ок
2,000	67,631	~0.154	0.000	0.22	0	31	ОК
1,001	66.651	-0.404	0.000	0.03	0	34	ОК
3,000	66.290	-0.485	0.000	0.00	0	1	ок
4,000	66,726	-0.489	0,000	0.00	0	0	ОК
1.002	66.127	-0.533	0,000	0.08	0	34	ОК

Egniol Limited		Page 1
The Felin	Client: Augean	
Bangor	Job: King's Cliffe SWM	TA Marro
LL57 4LH	Title: Flow in culvert	
Date Jan-06	Designed By JLM	110) 459 11 0 Re (0 (2)
File 10.01.06, 5 yr RP, 240		
Micro Drainage	Simulation W.9.5	

Return Period (years)	5	Analysis Time Step	Fine
Storm Duration (mins)	240	DVD Status	OFF
Profile Type	Winter	Inertia Status	OFF
Margin for Flood Risk warning (mm)	200		

PN	Water Lev. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity	Overflow (1/s)	Pipe Flow (1/s)	Status
1.000	74.052	-0.443	0.000	0.00	0	3	ОК
2.000	67,640	-0,145	0.000	0.28	0	39	ОК
1.001	66,660	-0.395	0.000	0.03	0	42	ОК
3.000	66,295	-0.480	0.000	0.00	0	1	ОК
4.000	66.730	-0.485	0.000	0.00	0	0	ОК
1,002	66.138	-0.522	0.000	0.10	0	42	ок

Egniol Limited		Page 1
The Felin	Client: Augean	
Bangor	Job: King's Cliffe SWM	
LL57 4LH	Title: Flow in culvert	
Date Jan-06	Designed By JLM	
File 10.01.06, 10 yr RP, 24	Checked By	
Micro Drainage	Simulation W.9.5	

Return Period (years)	10	Analysis Time Step	Fine
Storm Duration (mins)	240	DVD Status	OFF
Profile Type	Winter	Inertia Status	OFF
Margin for Flood Risk warning (mm)	200		

PN	Water Lev. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity	Overflow (1/s)	Pipe Flow (1/s)	Status
1.000	74.052	-0,443	0.000	0.00	0	3	ОК
2.000	67.644	-0.141	0.000	0,30	0	42	ОК
1.001	66.663	-0.392	0.000	0.03	0	45	ОК
3.000	66.297	-0.478	0.000	0.00	0	1	ОК
4.000	66.731	-0.484	0.000	0.00	0	1	OK
1,002	66.142	-0.518	0.000	0.11	0	45	O K

Egniol Limited		Page 1
The Felin	Client: Augean	
Bangor	Job: King's Cliffe SWM	
LL57 4LH	Title: Flow in culvert	
Date Jan-06	Designed By JLM	
File 10.01.06, 30 yr RP, 14	Checked By	
Micro Drainage	Simulation W.9.5	

Return Period (years)	30	Analysis Time Step	Fine
Storm Duration (mins)	1440	DVD Status	OFF
Profile Type	Summer	Inertia Status	OFF
Margin for Flood Risk warning (mm)	200		

PN	Water Lev. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity	Overflow (1/s)	Pipe Flow (1/s)	Status
1.000	74.171	-0.324	0.000	0.08	0	49	ОК
2.000	67.640	-0.145	0.000	0.28	0	39	ОК
1.001	66.707	-0.348	0.000	0.06	0	86	ОК
3.000	66.290	-0.485	0.000	0.00	0	1	ОК
4.000	66.727	-0.488	0.000	0.00	0	0	ОК
1.002	66.191	~0.469	0.000	0.21	0	86	ОК

Egniol Limited		Page 1
The Felin	Client: Augean	
Bangor	Job: King's Cliffe SWM	
LL57 4LH	Title: Flow in culvert	
Date Jan-06	Designed By JLM	
File 10.01.06, 50 yr RP, 14	Checked By	
Micro Drainage	Simulation W.9.5	

Return Period (years)	50	Analysis Time Step	Fine
Storm Duration (mins)	1440	DVD Status	OFF
Profile Type	Summer	Inertia Status	OFF
Margin for Flood Risk warning (mm)	200		

PN	Water Lev. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity	Overflow (1/s)	Pipe Flow (1/s)	Status
1,000	74.194	-0,301	0.000	0.11	0	66	O K
2.000	67.642	-0.143	0.000	0.29	0	41	O K
1.001	66.719	-0.336	0.000	0.08	0	105	ОК
3.000	66.292	-0.483	0.000	0.00	0	1	ОК
4.000	66.728	-0.487	0.000	0.00	0	0	O K
1.002	66.214	-0.446	0.000	0.25	0	105	ОК

	-			
Egnic	ol Limited		Page 1	*
The I			Client: Augean Job: King's Cliffe SWM	
Bango LL57			Title: Flow from field	
	Jan-06		Dogrand Ry JIM	
		50 yr RP, 14	Checked By	
Micro	Drainage		Simulation W.9.5	
	75	Graphs Storm Duration 1	for Pipe 1.000 USMH Number 2 440 mins (Summer) Return Period 50 years Status : OK	
	60			✓ Inflow
Flow (US)	30-		The state of the s	
	15	and the second second	No.	✓ Outilow
		de la companya de la		
	1.5	450 950	1440 1920 2400 2880 Time (mins)	
	Ì			
				' Cover
	1.1-			
Ê				
Dopth (m)				
ŏ	9.0			. Soffit
	0.4			
				манерали
				/ Depth
	0.0		1440 1920 2400 2280	
	0	480 950		
			Time (mins)	
		(c)1982-2004 Micro Drainage	

	i i i i i i i i i i i i i i i i i i i		
Egniol Limited		· · · · · · · · · · · · · · · · · · ·	Page 1
The Felin		Client: Augean	
Bangor		Job: King's Cliffe SWM	
LL57 4LH		Title: Flow from SE pond	
Date Jan-06		Designed By JLM	
File 10.01.06,	50 yr RP, 14	Checked By	
Micro Drainage		Simulation W.9.5	
		s for Pipe 2.000 USMH Numbe 440 mins (Summer) Return Per Status : OK	

(c)1982-2004 Micro Drainage

	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Egnic	Limited			011-		Page 1	
The I	ellu			Client: Auge Job: King's	ean Cliffo coii	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Bango LL57	7± 41.B			Title: Flow	from road M		(a)
Date	Jan-06			Designed By	JLM	- In many	مر اگر می اور
File	10.01.06,	50 yr RP,	14	Checked By		12/2	وحرحيت
Micro	Drainage	· · · · · · · · · · · · · · · · · · ·		Simulation W	7.9.5		
						2	
		Storm Dured	raphs	for Pipe 3.	000 USMH Number mmer) Return Per	<u>_3</u>	
		SCOIM DUIA	71011 1	Status		100 30 years	
				beacae	, 011		
	6						
	-						
	5						
							∕ inflow
	1						
	4						
ঞ							
Flow (US)							
. 0	3						

							j
	2—						S. C.
	1—						✓ Outflow
		\sim					
			1		1 1 1 1 1 1 1 1	1	
	0	480	960	1440	1920	2400 2880	
				Time (mins)			
				, , , , , , , , , , , , , , , , , , , ,			
	1.5						`
	1.5						
							Cover
	1.1-						
-							
Depth (m)							
Dept	0.8—						. Soffit
							· weilit

	0.4						
					•		
							∕ Depth
	0.0	++++	- - 	1440	1920	2400 2880	
	U	4 6 0	950		19 <i>2</i> 0	2400 Z669	
				Time (mins)			
							į

(c)1982-2004 Micro Drainage

en de la companya de			Million of Early 194
Egniol Limited		Page 1	
The Felin	Client: Augean		
Bangor	Job: King's Cliffe SWM		6 - The second of the second o
LL57 4LH	Title: Flow from road S		
Date Jan-06	Designed By JLM	1) D J PE JUL	JE (0 (2) 1
File 10.01.06, 50 yr RP, 14	Checked By		
Micro Drainage	Simulation W.9.5		
Graphs Storm Duration	s for Pipe 4.000 USMH Number 3 1440 mins (Summer) Return Period Status : OK	50 years	
6			in a section of section of
5			√ Iujow
			- stateas
4-1-			
(1/2)			
Flow ((/s)			
3+			
2—			
			. O. H
1			✓ Outĕow
0	1440 1920 2400	 	
0 480 950		2880	
	Time (mins)		
1.5——			
·			
1			
			′ Cover
1.1	:		
· <u>-</u>			**************************************
£			***************************************
(m) Debth (m)			
Ď 0.8- -			. Soffit
[
0.4			
			✓ Depth
0.0	1440 1920 2400	2880	
0 ' ' ' 480 ' ' ' 590		2021	
	Time (mins)		
			į
)

					- 44.5
Egni	ol Limited			Page 1	
	Felin	. 3 . 574 4	Client: Augean		
Bang	or"		Job: King's Cliffe SWM		$(\circ) \cap \mathbb{Z}_{\geq 0}$
LL57	Jan-06		Title: Flow in culvert Designed By JLM		
		50 yr RP, 14	Checked By		وكرا عراثا
Micr	o Drainage		Simulation W.9.5		
	125	Graphs	for Pipe 1.002 USMH Numbe 440 mins (Summer) Return Pe Status : OK	r <u>3</u> riod 50 years	∕ Inflow
Flow (iis)	25				∕ Outflow
	2.5	480 990	1440 1920 Time (mins)	2400 2850	
Dopth (m)	1.0				' Cover
Depl	0.6				. Soffit
	0.0	460 950	Time (mins) 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920	2400 2680	∕ Deplh

-	Egniol Limited			Page 1
	The Felin		Client: Augean	
	Bangor		Job: King's Cliffe SWM	II) & MERO
	LL57 4LH		Title: Flow in culvert	
	Date Jan-06		Designed By JLM	11 D) 42 L I O 12 (O (5)
	File 10.01.06,	100 yr RP, 1	Checked By	
	Minus Dunings		Cimulation W Q 5	

Return Period (years)	100	Analysis Time Step	Fine
Storm Duration (mins)	1440	DVD Status	OFF
Profile Type	Summer	Inertia Status	OFF
Margin for Flood Risk warning (mm)	200		

PN	Water Lev. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity	Overflow (1/s)	Pipe Flow (1/s)	Status
1.000	74.230	-0.265	0.000	0.16	0	94	ОК
2.000	67.646	-0.139	0.000	0.31	0	44	ОК
1.001	66.737	-0.318	0.000	0.10	0	137	ОК
3.000	66.294	-0.481	0.000	0.00	0	1	ОК
4.000	66,729	-0.486	0.000	0.00	0	0	ок
1 002	66.243	-0.417	0.000	0.33	0	138	ок

	ol Limited	Page 1	
The	Felin	Client: Augean	1-:
Bang	or	Job: King's Cliffe SWM	(RRO) ~ 1
LL57	Jan-06	Title: Flow from field	
		Designed By JLM Checked By	
Micro	o Drainage	Simulation W.9.5	
	-		
		Graphs for Pipe 1.000 USMH Number 2	
		Storm Duration 1440 mins (Summer) Return Period 100 yea Status : OK	rs
		status , ox	
	100		
	ļ		
	60	ا الانتخاب الانتخاب ا	/ Inflow
		The state of the s	
(\$4)	60	د الله الله الله الله الله الله الله الل	
Flow (1/5)		مين نائند	
-			
	40		>
	40		
	20		✓ Outflow
			/ Collien
		The state of the s	
	0		<u></u>
	0 ' '	480 960 1440 1920 2400	2880
		Firme (mins)	
	1.5-1		
			^ Coyer
	1.1		
Ē			
(m) thơi	00		. Soffii
Depth (m)	0.8		
Depth (π)	0.8		
Depth (m)	0.6-		
Depth (m)	0.8		
Depth (π)			
Depth (m)	0.4		
Depth (m)			
Depth (m)			✓ D∋oth
Depth (m)			 ✓ Depth
Depth (m)	0.4		∕ Dapth
Depth (m)	0.4		ı
Depth (m)	0.4	460 1920 2490	✓ Depth
Depth (m)	0.4	480 650 1440 1920 2490 Time (mins)	1

	Total and the second se	
Egnio	I DIRILEG	
The F	elin Client: Augean	
Bango	Job: King's Cliffe SWM	9
LL57	4LH Title: Flow from SE pond	
Date	Jan-06 Designed By JLM	
File	10 01 06 100 yr RP. 1 Checked By	
Micro	Drainage Simulation W.9.5	
	Graphs for Pipe 2.000 USMH Number	
	Storm Duration 1440 mins (Summer) Return Period 100 years	
	Status : OK	
	50~ _	
		∠ Inflex
	40—	> 1111/255
(\$)	30—	
Flow (1/s)		
Ĕ		
-		
	20	
1	\	٦
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		✓ Outflow
	10	
	0 1920 2880	
	0 480 960 1440 1920 2400 2880	
1	Turne (mins)	
	Lane Visited	
}	Q5	
		* Cover
į		′ Cover
1		1 Cover
	0.4—	' Cover
	0.4	' Cover
	0.4	' Cover
	0.4—	' Cover
(E)	0.4—	' Cover
(m) tlgs		
Dopth (m)	0.4—	' Cover
Dopth (m)		
Depth (m)	03-	
Depth (m)		
Depth (m)	03-	. Soffil
Depth (m)	03-	
Depth (m)	03-	. Soffil
Depth (m)	03-	. Soffil
Depth (m)	0.1	. Soffil
Depth (m)	0.1	. Soffil
Depth (m)	0.1	. Soffil
Depth (m)	0.1	. Soffil
Depth (m)	0.1	. Soffil
(w)	0.1	. Soffil
(w)	0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0	. Soffil
(w)	0.1	. Soffil

3

3

9

3

E

B

128

ŋ

2

Œ

Egniol Limited	Page 1	
The Felin	Client: Augean	
Bangor	Job: King's Cliffe SWM	2 / J
LL57 4LH	Title: Flow from road N	
Date Jan-06	Designed By JLM	വെട്ടാര്
File 10.01.06, 100 yr RP, 1	Checked By	
Micro Drainage	Simulation W.9.5	
MICIO DIAINAGE	Jindiacion W.J.J	
Graph: Storm Duration 1	s for Pipe 3.000 USMH Number 3 440 mins (Summer) Return Period 100 years Status : OK	
⁶		
5		c latters
		✓ Inflow
4		
(\$ ₁)		
How (I/s)		
. 4 3 -		
		>
2		
		✓ Outflow
<u>+</u>		
		
0 480 950	1440 1920 2400 2880	
V 450 500	[440 1520 2400 2000	
	Time (mins)	
1.5		
		· Cover
4.		
1.1		
e		
(£) 450 0.8—		
0.8		
_ 5.5		Soffit
]		
0.4		
	•	✓ Depth
0.0		
0 480 960	1440 1920 2400 2650	
	Time (mins)	
	····· kniet	

(c)1982-2004 Micro Drainage

त्र पूर्व अन्य प्राप्त कराका अवस्था के <mark>स्मान्त्र स्थान</mark>	ကြည်းသည်။ အရှိနေသို့ နိုင်ငံ မြောက်သည်။ အရှိနေသည်။ အရှိနေသည်။ ကြည်းသည်	
Egniol Limited The Felin	Client: Augean	Page 1
Bangor LL57 4LH	Job: King's Cliffe SWM Title: Flow from road S	
Date Jan-06 File 10.01.06, 100 yr RP, 1	Designed By JLM	Drainage.
Micro Drainage	Simulation W.9.5	
Graph	s for Pipe 4.000 USMH Number 3	d 100 years
Storm Duration	Status : OK	1 100 years
6 -		
5		∠ Inflow
		> Indow
4—		
(t ₂ /1)		
Flow (its)		
2—		
		· / Outflow
1		
0 480 960	1440 1920 2	2880
	Time (mins)	
1.5		
		· Cover
		Cover
1.1-		
(u) -8.0 Dophi		
8 o.s 		. Soffa
	The state of the s	
0.4:		
		✓ Depth
		
0.0 420 56		2400 2890
	Time (mins)	
	(c)1982-2004 Micro Drainage	

	South on any factor to the first term of the same production and the same production of the			
Egniol Limit	ed	12 12 12 12 12	Page 1	.==:-
The Felin	Client: Auge	an		iar-
Bangor	Job: King s	Cliffe SWM		
LL57 4LH	Title: Flow	in curvert		
Date Jan-06	Designed By	0.77%		
Micro Draina	6, 100 yr RP, 1 Checked By ge Simulation W	9.5		
MICIO DIAINA	ge Dimutation w			
150	Graphs for Pipe 1.0 Storm Duration 1440 mins (Sum Status	mer) Return Period	100 years	
120——			∕ Inflow	
30	480 960 Time (mins)	1920 2400	/ Outhow	
2.5			, Covet	
(ii) tidOO 1.3——			. Soffit	
0.6	460 950 1440 Time (mins)	1920 2400	✓ Depth ✓ 2860	
	(c)1982-2004 Mi	cro Drainage		

APPENDIX F

BASELINE MONITORING RESULTS

Results for 08 February 2005

BEE NO	ı	040404	040405	040400
REF. NO		612164	612165	612166
LOCATION		SW Swall	SW Swall	SW Field
		Inl S	Ini N	RO
DATE		08/02/200	08/02/2005	08/02/2005
		5		
Cadmium , Total as Cd	mg/l	<0.0005	<0.0005	<0.0005
Chromium , Total as Cr	mg/l	<0.005	<0.005	<0.005
Lead , Total as Pb	mg/l	<0.005	<0.005	0.020
Mercury , Total as Hg	mg/l	<0.0001	<0.0001	<0.0001
Nickel, Total as Ni	mg/l	<0.005	<0.005	<0.005
Zinc, Total as Zn	mg/l	<0.005	<0.005	0.087
рН		8.0	7.9	7.8
Conductivity- Electrical 20C	uS/cm	655	524	688
Ammoniacal Nitrogen as N	mg/l	1.6	<0.3	<0.3
Chloride as Cl	mg/l	11	7	63
Sulphate as SO4	mg/l	72	20	128
BOD + ATU (5 day)	mg/l	<1	<1	<1
Mecoprop	ug/l	<0.05	<0.05	<0.05
Trichloroethene	ug/l	<1	<1	<1
2 - Chlorophenol	ug/l	<20	<20	<20
2 - Methylphenol	ug/l	<20	<20	<20
2,4 - Dichlorophenol	ug/l	<20	<20	<20
2,4 - Dimethylphenol	ug/l	<20	<20	<20
2,4,6 - Trichlorophenol	ug/l	<20	<20	<20
3,5 Dimethylphenol	ug/l	<20	<20	<20
4-Chlorophenol	ug/l	<20	<20	<20
4-Methylphenol	ug/l	<20	<20	<20
Phenol	ug/l	<20	<20	<20
Toluene	ug/l	<0.4	<0.4	<0.4
Tributyltin	ug/l	<0.02	<0.02	<0.02
Arsenic (FILT) ICPMS	mg/l	<0.001	<0.001	<0.001
Selenium (T) ICPMS	mg/l	0.002	0.001	0.002
Comment	J			
	<u> </u>			

Results for 02 March 2005

REF. NO		631002	631003	631004	631005
LOCATION		SWSWALLI	SWSWALLI	SW Field	SW Road
		NLS	NLN	RO	RO
DATE		02/03/2005	02/03/2005	02/03/2005	02/03/2005
Cadmium , Total as Cd	mg/l	<0.0005	<0.0005	<0.0005	
Chromium, Total as Cr	mg/l	<0.005	<0.005	<0.005	
Lead , Total as Pb	mg/l	<0.005	<0.005	0.010	
Mercury, Total as Hg	mg/l	<0.0001	<0.0001	<0.0001	
Nickel, Total as Ni	mg/l	<0.005	<0.005	<0.005	
Zinc, Total as Zn	mg/l	<0.005	<0.005	0.070	
pH		8.2	8.2	8.1	
Conductivity- Electrical	uS/c	529	555	2770	
20C	m				
Ammoniacal Nitrogen as N	mg/l	2.4	1.5	1.1	
Chloride as Cl	mg/l	12	9	807	
Sulphate as SO4	mg/l	48	21	141	
BOD + ATU (5 day)	mg/l	<1	<1	<1	<u> </u>
Mecoprop	ug/l	<0.04	<0.04	<0.04	
Trichloroethene	ug/l	<1	<1	<1	
2 - Chlorophenol	ug/l	<20	<20	<20	
2 - Methylphenoi	ug/l	<20	<20	<20	
2.4 - Dichlorophenol	ug/l	<20	<20	<20	
2,4 - Dimethylphenol	ug/l	<20	<20	<20	
2,4,6 - Trichlorophenol	ug/l	<20	<20	<20	
3,5 Dimethylphenol	ug/i	<20	<20	<20	
4-Chlorophenol	ug/l	<20	<20	<20	
4-Methylphenol	ug/l	<20	<20	<20	
Phenol	ug/l	<20	<20	<20	
Toluene	ug/l	<0.4	<0.4	<0.4	
Tributyltin	ug/l	<0.02	<0.02	<0.02	
Arsenic (FILT) ICPMS	mg/l	<0.001	<0.001	0.003	
Selenium (T) ICPMS	mg/l	0.002	0.002	0.001	
Sample Received					Empty
Comment					

3

鞱

E

E.

Results for 24 March 2005

DEE NO		651596	651597	651598	651599
REF. NO				SW Field	SW Road
LOCATION		SW Swall N	SW Swall S	RO	RO
LOCATION DATE		24/03/2005	24/03/2005	24/03/2005	24/03/2005
Cadmium, Total as Cd	mg/l	<0.0005	<0.0005	0.0010	
Chromium, Total as Cr	mg/l	< 0.005	<0.005	<0.005	
Lead, Total as Pb	mg/l	0.009	0.011	0.016	
Mercury, Total as Hg	mg/l	<0.0001	<0.0001	<0.0001	
Nickel, Total as Ni	mg/l	< 0.005	<0.005	<0.005	
Zinc, Total as Zn	mg/l	0.012	0.016	0.061	
	111311	8.1	8.1	8.2	
pH	uS/c				
Conductivity- Electrical 20C	m	515	669	805	
Ammoniacal Nitrogen as N	mg/l	0.4	0.4	0.5	
Chloride as Cl	mg/i	9	17	107	
Sulphate as SO4	mg/l	19	86	130	
D.O. concentration	mg/l	Sch`d	Sch`d	Sch`d	
BOD + ATU (5 day)	mg/l	<1	<1	<1	
Mecoprop	ug/l	<0.04	<0.04	0.186	
Trichloroethene	ug/l	<1	<1	<1	
2 - Chlorophenol	ug/l	<20	<20	<20	
2 - Methylphenol	ug/l	<20	<20	<20	
2,4 - Dichlorophenol	ug/l	<20	<20	<20	
2,4 - Dimethylphenol	ug/l	<20	<20	<20	
2,4,6 - Trichlorophenol	ug/i	<20	<20	<20	
3,5 Dimethylphenol	ug/l	<20	<20	<20	
4-Chlorophenol	ug/l	<20	<20	<20	
4 Mathylphonol	ug/l	<20	<20	<20	
4-Methylphenol	ug/l	<20	<20	<20	
Phenol	ug/l	<0.4	<0.4	<0.4	
Toluene	ug/l	<0.02	<0.02	<0.02	
Tributyltin	mg/l	0.005	0.005	0.005	
Arsenic (FILT) ICPMS	mg/l	0.001	0.001	<0.001	
Selenium (T) ICPMS	ing/i	J.55.			Empty
Sample Received	 				
Comment					

Results from 11 July 2005

REF. NO		769818
LOCATION		SWFIELD
DATE		11/07/2005
Cadmium , Total as Cd	mg/l	0.0010
Chromium , Total as Cr	mg/l	<0.005
Lead , Total as Pb	mg/l	<0.005
Mercury , Total as Hg	mg/l	<0.0001
Nickel, Total as Ni	mg/l	<0.005
Zinc, Total as Zn	mg/l	0.013
pH		7.9
Conductivity- Electrical 20C	uS/cm	534
Ammoniacal Nitrogen as N	mg/i	<0.3
Chloride as Cl	mg/l	9
Sulphate as SO4	mg/l	39
BOD + ATU (5 day)	mg/l	<1
Mecoprop	ug/l	<0.04
2 - Chlorophenol	ug/l	<20
2 - Methylphenol	ug/l	<20
2,4 - Dichlorophenol	ug/l	<20
2,4 - Dimethylphenol	ug/l	<20
2,4,6 - Trichlorophenol	ug/l	<20
3,5 Dimethylphenol	ug/l	<20
4-Chlorophenol	ug/l	<20
4-Methylphenol	ug/l	<20
Phenol	ug/l	<20
Tributyltin	ug/l	<0.05
Arsenic (FILT) ICPMS	mg/l	<0.001
Selenium (T) ICPMS	mg/l	<0.001
Trichloroethene	ug/l	<0.10
Toluene	ug/l	<0.10
Comment		

Results for 25 July 2005

REF. NO		769817
LOCATION		SWFIELD
DATE		25/07/2005
Cadmium , Total as Cd	mg/l	0.0010
Chromium , Total as Cr	mg/l	<0.005
Lead , Total as Pb	mg/l	<0.005
Mercury , Total as Hg	mg/l	<0.0001
Nickel, Total as Ni	mg/l	<0.005
Zinc, Total as Zn	mg/l	0.005
рН		7.9
Conductivity- Electrical 20C	uS/cm	536
Ammoniacal Nitrogen as N	mg/l	<0.3
Chloride as Cl	mg/l	10
Sulphate as SO4	mg/l	38
BOD + ATU (5 day)	mg/l	<1
Mecoprop	ug/l	<0.04
2 - Chlorophenol	ug/l	<20
2 - Methylphenol	ug/l	<20
2,4 - Dichlorophenol	ug/l	<20
2,4 - Dimethylphenol	ug/l	<20
2,4,6 - Trichlorophenol	ug/l	<20
3,5 Dimethylphenol	ug/l	<20
4-Chlorophenol	ug/l	<20
4-Methylphenol	ug/l	<20
Phenol	ug/l	<20
Tributyltin	ug/l	<0.05
Arsenic (FILT) ICPMS	mg/l	<0.001
Selenium (T) ICPMS	mg/l	0.001
Trichloroethene	ug/l	<0.10
Toluene	ug/l	<0.10
Comment		

3

3

î S

3

13

18

1

e E

ULE

Dil.

LE

EE.

H

u<u>s</u>

Results for 14 October 2005

REF. NO		135905
LOCATION		SWROADRO
DATE		14/10/2005
Cadmium , Total as Cd	mg/l	<0.0005
Chromium , Total as Cr	mg/l	<0.005
Lead , Total as Pb	mg/l	0.020
Mercury , Total as Hg	mg/l	0.0001
Nickel , Total as Ni	mg/l	<0.005
Zinc, Total as Zn	mg/l	0.068
рН		6.7
Conductivity- Electrical 20C	uS/cm	150
Ammoniacal Nitrogen as N	mg/l	0.5
Chloride as Cl	mg/l	16
Sulphate as SO4	mg/l	5
BOD + ATU (5 day)	mg/l	4
Mecoprop	ug/l	<0.04
2 - Chlorophenol	ug/l	<20
2 - Methylphenol	ug/l	<20
2,4 - Dichlorophenol	ug/l	<20
2,4 - Dimethylphenol	ug/l	<20
2,4,6 - Trichlorophenol	ug/l	<20
3,5 Dimethylphenol	ug/l	<20
4-Chlorophenol	ug/l	<20
4-Methylphenol	ug/l	<20
Phenol	ug/l	<20
Tributyltin	ug/l	<0.02
Arsenic (FILT) ICPMS	mg/l	<0.001
Selenium, total by ICP-MS	mg/l	<0.001
Trichloroethene	ug/l	<0.10
Toluene	ug/l	<0.10
Comment		

ī

1

E

Щ

Ц

133

Results for 19 October 2005

		405000
REF. NO		135922
LOCATION		SWROADRO
DATE		19/10/2005
Cadmium , Total as Cd	mg/l	<0.0005
Chromium , Total as Cr	mg/l	<0.005
Lead , Total as Pb	mg/l	0.012
Mercury , Total as Hg	mg/l	0.0001
Nickel , Total as Ni	mg/l	<0.005
Zinc, Total as Zn	mg/l	0.045
рН		7.0
Conductivity- Electrical 20C	uS/cm	130
Ammoniacal Nitrogen as N	mg/l	<0.3
Chloride as Cl	mg/l	13
Sulphate as SO4	mg/l	<5
BOD + ATU (5 day)	mg/l	2
Месоргор	ug/l	<0.04
2 - Chlorophenol	ug/l	<20
2 - Methylphenol	ug/l	<20
2,4 - Dichlorophenol	ug/l	<20
2,4 - Dimethylphenol	ug/l	<20
2,4,6 - Trichlorophenol	ug/l	<20
3,5 Dimethylphenol	ug/l	<20
4-Chlorophenol	ug/l	<20
4-Methylphenol	ug/l	<20
Phenol	ug/l	<20
Tributyltin	ug/l	<0.02
Arsenic (FILT) ICPMS	mg/l	<0.001
Selenium, total by ICP-MS	mg/l	<0.001
Trichloroethene	ug/l	<0.10
Toluene	ug/l	<0.10
Comment	1	
OOHAHOR		1

APPENDIX G

ij

i

ã

ĬI.

3

IJ

APPENDIX H

ð

Name of

(

4

1

Ę

ij

Ц

1

1

I

APPENDIX I

APPENDIX J

Egniol Consulting Limited

Head Office: Tre Felin Bangor Gwynedd LL57 4LH

Telephone: 01248 355996 Fax: 01248 371996

Cheshire Office: Primtec House Hulme Lane Lower Peover Cheshire WA16 9QQ

Telephone: 01565 723618 Fax: 01565 723945

Derbyshire Office:
Amber Mill
Oakerthorpe
Alfreton
Derbyshire
DE55 7LL
Telephone: 01773 53

Telephone: 01773 520200 Fax: 01773 835439

www.egniol.com

APPENDIX B TOPOGRAPHICAL SURVEY OF THE PROPOSED WESTERN EXTENSION

APPENDIX C PROPOSED RESTORATION CONCEPT SCHEME

APPENDIX D GREENFIELD RUNOFF CALCULATIONS

Table D1

Calculation of the greenfield surface water runoff rate for the catchment draining to the east based on the method presented in The Institute of Hydrology, 1994. Flood estimation for small catchments. Report number 124.

Parameter (units)	Units		Source/Justification
Area of catchment	km²	0.05	Table 1 and as shown on Figure 3.
Area of catchment in SOIL class 1	km²	0.05	Soil type at and in the vicinity of the site prior to extraction based on the soil maps presented in the Flood Studies Report published by the The Institute of Hydrology dated 1993.
Area of catchment in SOIL class 2	km²	0.00	
Area of catchment in SOIL class 3	km²	0.00	
Area of catchment in SOIL class 4	km²	0.00	
Area of catchment in SOIL class 5	km²	0.00	
Soil index (SOIL)	n/a	0.1	Calculated from the weighted sum of the fractions of the surface areas within the catchment which have different soil types
Standard average annual rainfall (SAAR)	mm	575	FEH catchment descriptor
Greenfield surface water			
run-off rate for 50ha site			
(Q _{50ha)}	m³/s	0.007	
Correction	m³/s	0.0993	
Greenfield surface water run-off rate (Qbar _{rural})	m³/s	0.001	Calculated.
Greenfield surface water run-off rate (Qbar _{rural})	m³/day	57	Calculated.
1 in 1 year surface water runoff for rainfall	m³/s	0.001	Calculated assuming a 1 year growth curve factor of 0.87. The 1 in 1 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 1 year surface water runoff for rainfall	m³/day	50	Calculated.
1 in 30 year surface water runoff for rainfall	m³/s	0.002	Calculated assuming a 30 year growth curve factor of 2.55. The 1 in 30 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 30 year surface water runoff for rainfall	m³/day	146	Calculated.
1 in 100 year surface water runoff for rainfall	m³/s	0.002	Calculated assuming a 100 year growth curve factor of 3.56. The 1 in 100 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 100 year surface water runoff for rainfall	m³/day	204	Calculated.
1 in 100 year surface water runoff for rainfall plus 40%	m³/s	0.003	Calculated assuming a 100 year growth curve factor of 3.56 and a 40% allowance for increased rainfall intensity as a result of climate change The 1 in 100 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 100 year surface water runoff for rainfall plus 40%	m³/day	285	Calculated.

Table D2

Calculation of the greenfield surface water runoff rate for the catchment draining to the swallow hole based on the method presented in The Institute of Hydrology, 1994. Flood estimation for small catchments. Report number 124.

Parameter (units)	Units		Source/Justification
Area of catchment	km²	0.16	Table 1 and as shown on Figure 3.
Area of catchment in	km²		_
SOIL class 1	Km-	0.16	Soil type at and in the vicinity of the site prior to extraction based on the soil maps presented in the Flood Studies Report published by the The Institute of Hydrology dated 1993.
Area of catchment in SOIL class 2	km²	0.00	
Area of catchment in SOIL class 3	km²	0.00	
Area of catchment in SOIL class 4	km²	0.00	
Area of catchment in SOIL class 5	km²	0.00	
Soil index (SOIL)	n/a	0.1	Calculated from the weighted sum of the fractions of the surface areas within the catchment which have different soil types
Standard average annual rainfall (SAAR)	mm	575	FEH catchment descriptor
Greenfield surface water			
run-off rate for 50ha site			
(Q _{50ha)}	m³/s	0.007	
Correction	m³/s	0.3102	
Greenfield surface water run-off rate (Qbar _{rural})	m³/s	0.002	Calculated.
Greenfield surface water run-off rate (Qbar _{rural})	m³/day	179	Calculated.
1 in 1 year surface water runoff for rainfall	m³/s	0.002	Calculated assuming a 1 year growth curve factor of 0.87. The 1 in 1 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 1 year surface water runoff for rainfall	m³/day	156	Calculated.
1 in 30 year surface water runoff for rainfall	m³/s	0.005	Calculated assuming a 30 year growth curve factor of 2.55. The 1 in 30 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 30 year surface water runoff for rainfall	m³/day	456	Calculated.
1 in 100 year surface water runoff for rainfall	m³/s	0.007	Calculated assuming a 100 year growth curve factor of 3.56. The 1 in 100 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 100 year surface water runoff for rainfall	m³/day	637	Calculated.
1 in 100 year surface water runoff for rainfall plus 40%	m³/s	0.010	Calculated assuming a 100 year growth curve factor of 3.56 and a 40% allowance for increased rainfall intensity as a result of climate change The 1 in 100 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 100 year surface water runoff for rainfall plus 40%	m³/day	891	Calculated.

Table D3

Calculation of the greenfield surface water runoff rate for the catchment draining to the south based on the method presented in The Institute of Hydrology, 1994. Flood estimation for small catchments. Report number 124.

Parameter (units)	Units	1	Source/Justification
	L	1 0.00	
Area of catchment	km²		Table 1 and as shown on Figure 3.
Area of catchment in SOIL class 1	km²		Soil type at and in the vicinity of the site prior to extraction based on the soil maps presented in the Flood Studies Report published by the The Institute of Hydrology dated 1993.
Area of catchment in SOIL class 2	km²	0.00	
Area of catchment in SOIL class 3	km²	0.00	
Area of catchment in SOIL class 4	km²	0.00	
Area of catchment in SOIL class 5	km²	0.00	
Soil index (SOIL)	n/a	0.1	Calculated from the weighted sum of the fractions of the surface areas within the catchment which have different soil types
Standard average annual rainfall (SAAR)	mm	575	FEH catchment descriptor
Greenfield surface water run-off rate for 50ha site			
(Q _{50ha)}	m³/s	0.007	
Correction	m³/s	0.1282	
Greenfield surface water run-off rate (Qbar _{rural})	m³/s	0.001	Calculated.
Greenfield surface water run-off rate (Qbar _{rural})	m³/day	74	Calculated.
1 in 1 year surface water runoff for rainfall	m³/s	0.001	Calculated assuming a 1 year growth curve factor of 0.87. The 1 in 1 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 1 year surface water runoff for rainfall	m³/day	64	Calculated.
1 in 30 year surface water runoff for rainfall	m³/s	0.002	Calculated assuming a 30 year growth curve factor of 2.55. The 1 in 30 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 30 year surface water runoff for rainfall	m³/day	188	Calculated.
1 in 100 year surface water runoff for rainfall	m³/s	0.003	Calculated assuming a 100 year growth curve factor of 3.56. The 1 in 100 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 100 year surface water runoff for rainfall	m³/day	263	Calculated.
1 in 100 year surface water runoff for rainfall plus 40%	m³/s	0.004	Calculated assuming a 100 year growth curve factor of 3.56 and a 40% allowance for increased rainfall intensity as a result of climate change. The 1 in 100 year growth curve factor was determined using information obtained using the greenfield runoff estimation tool presented on the UK Sustainable Drainage website (http://www.uksuds.com/greenfieldrunoff_js.htm).
1 in 100 year surface water runoff for rainfall plus 40%	m³/day	368	Calculated.

Table D4

Comparison of Qbar calculations with 2l/s/ha

Catchment	Area (m²)	Qbar IOH124 (I/s)	Qbar UKSUDS FEH STAT (I/s)	2l/s/ha (l/s)
Catchment draining to the east	49,650	0.66	13.14	9.93
Catchment draining to the swallow hole	155,100	2.07	41.06	31.02
Catchment draining to the south	64,100	0.86	16.97	12.82

Calculated by:

Site name:

Greenfield runoff rate estimation for sites

Jo Congo	Si
ENRMF W Ext - Wittering	La

Site location: Northants

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

www.uksuds.com | Greenfield runoff tool

ite Details

Latitude: 52.58852° N Longitude: 0.51857° W

Reference:

3062305219

Date:

Jul 09 2021 12:15

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):

Methodology Q_{MED} estimation method: BFI and SPR method:

BFI / BFIHOST: Q_{MED} (I/s):

HOST class:

Q_{BAR} / Q_{MED} factor:

Notes

(1) Is Q_{BAR} < 2.0 I/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

11.69

579

4.21

Edited

579

0.87

2.45

3.56

4.21

5

4.965

Calculate from BFI and SAAR

Calculate from dominant HOST

Hydrological characteristics Default

0.374

1.12

SAAR (mm): Gr

Gr

Growth curve factor 200 years:

Gr

ydrologicai region:	5	
rowth curve factor 1 year:	0.87	
rowth curve factor 30 years:	2.45	
rowth curve factor 100 years:	3.56	

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	13.14	13.14
1 in 1 year (l/s):	11.43	11.43
1 in 30 years (l/s):	32.2	32.2
1 in 100 year (l/s):	46.79	46.79
1 in 200 years (l/s):	55.33	55.33

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme

Calculated by:

Site name:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

ENRMF W Ext - Swallow hole

Site location:

Northants

Jo Congo

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

Latitude: 52.58852° N Longitude: 0.51857° W

Reference:

3040132544

Date:

Jul 09 2021 12:19

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):

15.51

2.0 l/s/ha.

(1) Is Q_{BAR} < 2.0 I/s/ha?

Notes

Methodology

Q_{MED} estimation method: BFI and SPR method: **HOST class:**

BFI / BFIHOST:

Q_{MED} (I/s):

Q_{BAR} / Q_{MED} factor:

0.374

1.12

Hydrological characteristics

SAAR (mm): Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Calculate from BFI and SAAR Calculate from dominant HOST

Default

579

0.87

2.45

3.56

4.21

5

36.53

(2) Are flow rates < 5.0 l/s?

Edited

579

0.87

2.45

3.56

4.21

5

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	41.06	41.06
l in 1 year (l/s):	35.72	35.72
l in 30 years (l/s):	100.59	100.59
l in 100 year (l/s):	146.16	146.16
I in 200 years (l/s):	172.85	172.85

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme

Calculated by:

Site name:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site location: Northants

Jo Congo

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

ENRMF W Ext - Willow

Site Details

Latitude: 52.58852° N Longitude: 0.51857° W

Reference: 3241136926

Date: Jul 09 2021 12:22

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):

6.41

Notes

Methodology

Q_{MED} estimation method: Calculate from BFI and SAAR BFI and SPR method: Calculate from dominant HOST **HOST class:** BFI / BFIHOST: 0.374 Q_{MED} (I/s): 15.1 Q_{BAR} / Q_{MED} factor: 1.12

Hydrological characteristics

Default Edited SAAR (mm): 579 579 Hydrological region: 5 5 Growth curve factor 1 year: 0.87 0.87 Growth curve factor 30 years: 2.45 2.45 Growth curve factor 100 years: 3.56 3.56 Growth curve factor 200 years: 4.21 4.21

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

(1) Is Q_{BAR} < 2.0 I/s/ha?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	16.97	16.97
1 in 1 year (l/s):	14.76	14.76
1 in 30 years (l/s):	41.57	41.57
1 in 100 year (l/s):	60.41	60.41
1 in 200 years (l/s):	71.44	71.44

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme

APPENDIX E ATTENUATION STORAGE CALCULATIONS

Table E1 Calculation of attentuation storage during a 1 in 100 year storm event plus an allowance for climate change for the attenuation basin C1 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	20	ha	Derived consistent wi h Sec ion 5 and as shown on Figure 5.
Discharge rate	4320	m ³ /day	Permitted discharge limit (2007 SWMP)
Runoff coefficient	0.62	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	40%	unitless	The recommended upper end increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3) to test the sensi ivity of he design and additional mitigation.

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	29.69	166.26	5208.98	45.00	5164
0.5	38.79	108.61	6805.54	90.00	6716
0.75	44.39	82.86	7788.03	135.00	7653
1	48.39	67.75	8489.82	180.00	8310
1.5	54.55	50.91	9570.56	270.00	9301
2	59.39	41.57	10419.72	360.00	10060
3	67.22	31.37	11793.46	540.00	11253
4	73.3	25.66	12860.17	720.00	12140
5	78.18	21.89	13716.34	900.00	12816
6	82.2	19.18	14421.63	1080.00	13342
7	85.57	17.11	15012.89	1260.00	13753
8	88.42	15.47	15512.91	1440.00	14073
9	90.88	14.14	15944.50	1620.00	14325
10	93.02	13.02	16319.96	1800.00	14520
15	100.66	9.39	17660.36	2700.00	14960
15.25	100.94	9.27	17709.49	2745.00	14964
15.5	101.22	9.14	17758.61	2790.00	14969
15.75	101.5	9.02	17807.74	2835.00	14973
16	101.76	8.90	17853.35	2880.00	14973
16.25	102.02	8.79	17898.97	2925.00	14974
16.5	102.28	8.68	17944.58	2970.00	14975
16.75	102.52	8.57	17986.69	3015.00	14972
17	102.77	8.46	18030.55	3060.00	14971
18	103.69	8.06	18191.96	3240.00	14952
19	104.52	7.70	18337.58	3420.00	14918
20 24	105.28 107.8	7.37 6.29	18470.92 18913.04	3600.00 4320.00	14871 14593
30	107.8	5.29 5.16	19383.24	5400.00	13983
40	110.46	3.97	19913.08	7200.00	12713
50	115.52	3.23	20267.48	9000.00	11267
60	116.92	2.73	20513.11	10800.00	9713
70	118.12	2.36	20723.64	12600.00	8124
80	119.18	2.09	20909.62	14400.00	6510
90	120.15	1.87	21079.80	16200.00	4880
96	120.71	1.76	21178.05	17280.00	3898

Maximum storage volume	14975	m³
Critical Storm Period	16.5	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. https://www.gov.uk/guidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-allowances#peak-rainfallintensity-allowances

Denotes parameters which are determined based on the restora ion scheme, rainfall data or o her constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E2 Calculation of attentuation storage during a 1 in 30 year storm event plus an allowance for climate change for the attenuation basin C1 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	20	ha	Derived consistent with Section 5 and as shown on Figure 5.
Discharge rate	4320	m ³ /day	Permitted discharge limit (2007 SWMP)
Runoff coefficient	0.62	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on he catchment.
Climate change factor	20%	unitless	The recommended precautionary increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3).

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	22.02	105.70	3311.41	45.00	3266
0.5	28.64	68.74	4306.94	90.00	4217
0.75	32.51	52.02	4888.92	135.00	4754
1	35.48	42.58	5335.55	180.00	5156
1.5	39.85	31.88	5992.72	270.00	5723
2	43.22	25.93	6499.51	360.00	6140
3	48.66	19.46	7317.59	540.00	6778
4	52.92	15.88	7958.22	720.00	7238
5	56.41	13.54	8483.05	900.00	7583
6	59.35	11.87	8925.17	1080.00	7845
7	61.91	10.61	9310.15	1260.00	8050
8	64.12	9.62	9642.49	1440.00	8202
9	66.05	8.81	9932.73	1620.00	8313
10	67.76	8.13	10189.88	1800.00	8390
11	69.28	7.56	10418.47	1980.00	8438
12	70.63	7.06	10621.48	2160.00	8461
12.25	70.95	6.95	10669.60	2205.00	8465
12.5	71.25	6.84	10714.72	2250.00	8465
12.75	71.55	6.73	10759.83	2295.00	8465
13	71.84	6.63	10803.44	2340.00	8463
13.25	72.12	6.53	10845.55	2385.00	8461
13.5	72.39	6.43	10886.15	2430.00	8456
13.75	72.66	6.34	10926.76	2475.00	8452
14	72.92	6.25	10965.86	2520.00	8446
15	73.91	5.91	11114.73	2700.00	8415
20	77.72	4.66	11687.69	3600.00	8088
30	82.24	3.29	12367.42	5400.00	6967
35	83.8	2.87	12602.01	6300.00	6302
40	85.11	2.55	12799.01	7200.00	5599
50	87.23	2.09	13117.82	9000.00	4118
60	88.87	1.78	13364.45	10800.00	2564
70	90.33	1.55	13584.01	12600.00	984
80	91.69	1.38	13788.53	14400.00	-611
85	92.34	1.30	13886.27	15300.00	-1414
86	92.47	1.29	13905.82	15480.00	-1574
87	92.6	1.28	13925.37	15660.00	-1735
87.25	92.63	1.27	13929.88	15705.00	-1775

Maximum storage volume	8465	m³
Critical Storm Period	12.75	hr

References

- Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.
- Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.
- Reference 3. https://www.gov.uk/guidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-allowances#peak-rainfallintensity-allowances

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

ENRMF AUGEAN SOUTH LTD

Table E3 Calculation of attentuation storage during a 1 in 100 year storm event plus an allowance for climate change for the attenuation basin C2 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	6	ha	Derived consistent with Section 5 and as shown on Figure 5.
Discharge rate	1053	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.66	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cul ivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	40%	uni less	The recommended upper end increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3) to test the sensitivity of the design and additional mitigation.

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m ³)	(m ³)
0.25	29.69	166.26	1668.60	10.97	1658
0.5	38.79	108.61	2180.03	21.94	2158
0.75	44.39	82.86	2494.75	32.91	2462
1	48.39	67.75	2719.56	43.88	2676
1.5	54.55	50.91	3065.75	65.82	3000
2	59.39	41.57	3337.76	87.76	3250
3	67.22	31.37	3777.82	131.64	3646
4	73.3	25.66	4119.52	175.52	3944
5	78.18	21.89	4393.78	219.40	4174
6	82.2	19.18	4619.70	263.28	4356
7	85.57	17.11	4809.10	307.16	4502
8	88.42	15.47	4969.27	351.04	4618
9	90.88	14.14	5107.53	394.92	4713
10	93.02	13.02	5227.80	438.80	4789
15	100.66	9.39	5657.17	658.21	4999
16	101.76	8.90	5718.99	702.09	5017
17	102.77	8.46	5775.75	745.97	5030
18	103.69	8.06	5827.46	789.85	5038
19	104.52	7.70	5874.10	833.73	5040
19.25	104.71	7.62	5884.78	844.70	5040
19.5	104.9	7.53	5895.46	855.67	5040
19.75	105.09	7.45	5906.14	866.64	5040
20	105.28	7.37	5916.82	877.61	5039
20.25	105.46	7.29	5926.93	888.58	5038
20.5	105.63	7.21	5936.49	899.55	5037
20.75	105.81	7.14 7.07	5946.60	910.52	5036
21	105.98 106.63	6.79	5956.16 5992.69	921.49 965.37	5035 5027
23	107.23	6.53	6026.41	1009.25	5027
23	107.23	6.29	6058.44	1053.13	5005
25	108.31	6.29	6087.11	1097.01	4990
30	110.48	5.16	6209.06	1316.41	4893
35	112.15	4.49	6302.92	1535.81	4767
40	113.5	3.97	6378.79	1755.22	4624
50	115.52	3.23	6492.31	2194.02	4298
60	116.92	2.73	6570.99	2632.82	3938
70	118.12	2.36	6638.43	3071.63	3567
80	119.18	2.09	6698.01	3510.43	3188
90	120.15	1.87	6752.52	3949.24	2803
96	120.71	1.76	6783.99	4212.52	2571

Maximum storage volume	5040	m ³
Critical Storm Period	19	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. https://www.gov.uk/guidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-allowances#peak-rainfallintensity-allowances

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E4

Calculation of attentuation storage during a 1 in 30 year storm event plus an allowance for climate change for the attenuation basin C2 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	6	ha	Derived consistent wi h Sec ion 5 and as shown on Figure 5.
Discharge rate	1053	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.66	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	20%	unitless	The recommended precautionary increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3).

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	22.02	105.70	1060.75	10.97	1050
0.5	28.64	68.74	1379.65	21.94	1358
0.75	32.51	52.02	1566.07	32.91	1533
1	35.48	42.58	1709.15	43.88	1665
1.5	39.85	31.88	1919.66	65.82	1854
2	43.22	25.93	2082.00	87.76	1994
3	48.66	19.46	2344.05	131.64	2212
4	52.92	15.88	2549.27	175.52	2374
5	56.41	13.54	2717.39	219.40	2498
6	59.35	11.87	2859.01	263.28	2596
7	61.91	10.61	2982.33	307.16	2675
8	64.12	9.62	3088.79	351.04	2738
9	66.05	8.81	3181.77	394.92	2787
10	67.76	8.13	3264.14	438.80	2825
15	73.91	5.91	3560.40	658.21	2902
15.25	74.14	5.83	3571.48	669.18	2902
15.5	74.37	5.76	3582.56	680.15	2902
15.75	74.59	5.68	3593.16	691.12	2902
16	74.81	5.61	3603.75	702.09	2902
16.25	75.02	5.54	3613.87	713.06	2901
16.5	75.23	5.47	3623.99	724.03	2900
16.75	75.43	5.40	3633.62	735.00	2899
17	75.63	5.34	3643.25	745.97	2897
18	76.39	5.09	3679.87	789.85	2890
19	77.08	4.87	3713.10	833.73	2879
20	77.72	4.66	3743.93	877.61	2866
30	82.24	3.29	3961.67	1316.41	2645
40	85.11	2.55	4099.93	1755.22	2345
50	87.23	2.09	4202.05	2194.02	2008
60 70	88.87	1.78	4281.05	2632.82	1648
70 80	90.33 91.69	1.55 1.38	4351.38 4416.90	3071.63 3510.43	1280 906
90	91.69	1.36	4416.90	3949.24	530
96	92.98	1.24	4515.17	4212.52	303

Maximum storage volume	2902	m ³
Critical Storm Period	15.5	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. https://www.qov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-

<u>allowances#peak-rainfall-intensity-allowances</u>

Denotes parameters which are determined based on the restora ion scheme, rainfall data or o her constraints on discharge or water levels

Denotes parameters which are calculated based on other parameters

Table E5

Calculation of attentuation storage during a 1 in 100 year storm event plus an allowance for climate change for the attenuation basin C3 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	8	ha	Derived consistent wi h Sec ion 5 and as shown on Figure 5.
Discharge rate	1421	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.64	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	40%	unitless	The recommended upper end increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3) to test the sensi ivity of he design and additional mitigation.

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	29.69	166.26	2199.74	14.80	2185
0.5	38.79	108.61	2873.96	29.60	2844
0.75	44.39	82.86	3288.87	44.40	3244
1	48.39	67.75	3585.23	59.21	3526
1.5	54.55	50.91	4041.63	88.81	3953
2	59.39	41.57	4400.22	118.41	4282
3	67.22	31.37	4980.35	177.62	4803
4	73.3	25.66	5430.82	236.82	5194
5	78.18	21.89	5792.38	296.03	5496
6	82.2	19.18	6090.22	355.23	5735
7	85.57	17.11	6339.91	414.44	5925
8	88.42	15.47	6551.06	473.64	6077
9		14.14	6733.33	532.85	6200
10	93.02	13.02	6891.88	592.06	6300
15	100.66	9.39	7457.93	888.08	6570
16	101.76	8.90	7539.43	947.29	6592
17	102.77	8.46	7614.26	1006.50	6608
18	103.69	8.06	7682.42	1065.70	6617
18.5	104.11	7.88	7713.54	1095.30	6618
19 19.25	104.52 104.71	7.70 7.62	7743.92 7758.00	1124.91 1139.71	6619 6618
19.25	104.71	7.53	7772.07	1159.71	6618
19.75	105.09	7.45	7786.15	1169.31	6617
20	105.09	7.43	7800.23	1184.11	6616
25	108.31	6.07	8024.72	1480.14	6545
30	110.48	5.16	8185.50	1776.17	6409
40	113.5	3.97	8409.25	2368.22	6041
50	115.52	3.23	8558.91	2960.28	5599
60	116.92	2.73	8662.64	3552.34	5110
70	118.12	2.36	8751.55	4144.39	4607
80	119.18	2.09	8830.08	4736.45	4094
90	120.15	1.87	8901.95	5328.50	3573
96	120.71	1.76	8943.44	5683.74	3260

Maximum storage volume	6619	m ³
Critical Storm Period	19	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. https://www.gov.uk/guidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restora ion scheme, rainfall data or o her constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E6

Calculation of attentuation storage during a 1 in 30 year storm event plus an allowance for climate change for the attenuation basin C3 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	8	ha	Derived consistent wi h Sec ion 5 and as shown on Figure 5.
Discharge rate	1421	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.64	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	20%	unitless	The recommended precautionary increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3).

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	22.02	105.70	1398.40	14.80	1384
0.5	28.64	68.74	1818.81	29.60	1789
0.75	32.51	52.02	2064.58	44.40	2020
1	35.48	42.58	2253.19	59.21	2194
1.5	39.85	31.88	2530.71	88.81	2442
2	43.22	25.93	2744.73	118.41	2626
3	48.66	19.46	3090.20	177.62	2913
4	52.92	15.88	3360.74	236.82	3124
5	56.41	13.54	3582.37	296.03	3286
6	59.35	11.87	3769.08	355.23	3414
7	61.91	10.61	3931.65	414.44	3517
8	64.12	9.62	4072.00	473.64	3598
9	66.05	8.81	4194.57	532.85	3662
10	67.76	8.13	4303.16	592.06	3711
11	69.28	7.56	4399.69	651.26	3748
12	70.63	7.06	4485.43	710.47	3775
13	71.84	6.63	4562.27	769.67	3793
14	72.92	6.25	4630.86	828.88	3802
14.5	73.42	6.08	4662.61	858.48	3804
14.75	73.67	5.99	4678.49	873.28	3805
15	73.91	5.91	4693.73	888.08	3806
15.5	74.37	5.76	4722.94	917.69	3805
16	74.81	5.61	4750.88	947.29	3804
17	75.63	5.34	4802.96	1006.50	3796
18	76.39	5.09	4851.22	1065.70	3786
19	77.08	4.87	4895.04	1124.91	3770
20	77.72	4.66	4935.68	1184.11	3752
30	82.24	3.29	5222.73	1776.17	3447
40 50	85.11 87.23	2.55 2.09	5404.99	2368.22 2960.28	3037 2579
50	87.23 88.87	2.09	5539.63 5643.78	2960.28 3552.34	2579 2091
70	90.33	1.70	5736.49	4144.39	1592
80	90.33	1.38	5822.86	4736.45	1086
90	91.69	1.30	5904.79	5328.50	576
96	92.98	1.24	5952.41	5683.74	269

Maximum storage volume	3806	m ³
Critical Storm Period	15	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

 $\textbf{Reference 3.} \ \underline{\text{https://www.gov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-change-risk-projects-schemes-and-strategies-climate-risk-projects-schemes-and-strategies-climate-risk-projects-schemes-and-strategies-climate-risk-projects-schemes-and-strategies-climate-risk-projects-schemes-and-strategies-climate-risk-projects-schemes-and-strategies-climate-risk-projects-schemes-and-sche$

allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restora ion scheme, rainfall data or o her constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E7 Calculation of attentuation storage during a 1 in 100 year storm event plus an allowance for climate change for the attenuation basin C4 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	3	ha	Derived consistent wi h Sec ion 5 and as shown on Figure 5.
Discharge rate	480	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.66	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	40%	unitless	The recommended upper end increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3) to test the sensi ivity of the design and additional mitigation.

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	29.69	166.26	756.64	5.00	752
0.5	38.79	108.61	988.55	9.99	979
0.75	44.39	82.86	1131.27	14.99	1116
1	48.39	67.75	1233.21	19.98	1213
1.5	54.55	50.91	1390.19	29.97	1360
2	59.39	41.57	1513.54	39.96	1474
3	67.22	31.37	1713.09	59.94	1653
4	73.3	25.66	1868.03	79.92	1788
5	78.18	21.89	1992.40	99.90	1892
6	82.2	19.18	2094.85	119.88	1975
7	85.57	17.11	2180.73	139.86	2041
8	88.42	15.47	2253.36	159.84	2094
9	90.88	14.14	2316.06	179.82	2136
10	93.02	13.02	2370.59	199.80	2171
15	100.66	9.39	2565.30	299.70	2266
16	101.76	8.90	2593.33	319.68	2274
17	102.77	8.46	2619.07	339.66	2279
18	103.69	8.06	2642.52	359.64	2283
18.5	104.11	7.88	2653.22	369.63	2284
19	104.52	7.70	2663.67	379.62	2284
19.5	104.9	7.53	2673.35	389.61	2284
20	105.28	7.37	2683.04	399.60	2283
21	105.98	7.07	2700.88	419.58	2281
22	106.63	6.79	2717.44	439.56	2278
23	107.23	6.53	2732.73	459.54	2273
24 25	107.8 108.31	6.29 6.07	2747.26 2760.25	479.52 499.50	2268 2261
30	108.31	5.16	2815.56	499.50 599.40	2201
40	110.48	3.97	2815.50 2892.52	799.20	2093
50	115.52	3.97	2944.00	999.00	1945
60	116.92	2.73	2979.68	1198.80	1781
70	118.12	2.73	3010.26	1398.60	1612
80	119.18	2.09	3037.27	1598.40	1439
90	120.15	1.87	3061.99	1798.20	1264
96	120.71	1.76	3076.27	1918.08	1158

Maximum storage volume	2284	m ³
Critical Storm Period	19	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. <a href="https://www.qov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-schem allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restora ion scheme, rainfall data or o her constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E8

Calculation of attentuation storage during a 1 in 30 year storm event plus an allowance for climate change for the attenuation basin C4 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	3	ha	Derived consistent wi h Sec ion 5 and as shown on Figure 5.
Discharge rate	480	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.66	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	20%	unitless	The recommended precautionary increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3).

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	22.02	105.70	481.01	5.00	476
0.5	28.64	68.74	625.61	9.99	616
0.75	32.51	52.02	710.15	14.99	695
1	35.48	42.58	775.03	19.98	755
1.5	39.85	31.88	870.49	29.97	841
2	43.22	25.93	944.10	39.96	904
3	48.66	19.46	1062.93	59.94	1003
4	52.92	15.88	1155.99	79.92	1076
5	56.41	13.54	1232.22	99.90	1132
6	59.35	11.87	1296.45	119.88	1177
7	61.91	10.61	1352.37	139.86	1213
8	64.12	9.62	1400.64	159.84	1241
9	66.05	8.81	1442.80	179.82	1263
10	67.76	8.13	1480.16	199.80	1280
11	69.28	7.56	1513.36	219.78	1294
12	70.63	7.06	1542.85	239.76	1303
13	71.84	6.63	1569.28	259.74	1310
14	72.92	6.25	1592.87	279.72	1313
14.5	73.42	6.08	1603.79	289.71	1314
15	73.91	5.91	1614.50	299.70	1315
15.5	74.37	5.76	1624.54	309.69	1315
16	74.81	5.61	1634.16	319.68	1314
16.5	75.23	5.47	1643.33	329.67	1314
17	75.63	5.34	1652.07	339.66	1312
18 19	76.39 77.08	5.09 4.87	1668.67 1683.74	359.64 379.62	1309 1304
20	77.72	4.66	1697.72	399.60	1298
30	82.24	3.29	1796.46	599.40	1197
40	85.11	2.55	1859.15	799.20	1060
50	87.23	2.09	1905.46	999.00	906
60	88.87	1.78	1941.28	1198.80	742
70	90.33	1.55	1973.18	1398.60	575
80	91.69	1.38	2002.88	1598.40	404
90	92.98	1.24	2031.06	1798.20	233
96	93.73	1.17	2047.45	1918.08	129

Maximum storage volume	1315	m ³
Critical Storm Period	15.5	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. https://www.gov.uk/guidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-

allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restora ion scheme, rainfall data or o her constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E9 Calculation of attentuation storage during a 1 in 100 year storm event plus an allowance for climate change for the attenuation basin C5 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	6	ha	Derived consistent with Section 5 and as shown on Figure 5.
Discharge rate	1021	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.64	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	40%	unitless	The recommended upper end increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3) to test the sensitivity of the design and additional mi igation.

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m ³)
0.25	29.69	166.26	1565.54	10.63	1555
0.5	38.79	108.61	2045.37	21.27	2024
0.75	44.39	82.86	2340.66	31.90	2309
1	48.39	67.75	2551.58	42.54	2509
1.5	54.55	50.91	2876.39	63.81	2813
2	59.39	41.57	3131.60	85.08	3047
3	67.22	31.37	3544.47	127.61	3417
4	73.3	25.66	3865.07	170.15	3695
5	78.18	21.89	4122.39	212.69	3910
6	82.2	19.18	4334.36	255.23	4079
7	85.57	17.11	4512.06	297.76	4214
8	88.42	15.47	4662.34	340.30	4322
9	90.88	14.14	4792.05	382.84	4409
10	93.02	13.02	4904.89	425.38	4480
15	100.66	9.39	5307.75	638.06	4670
16	101.76	8.90	5365.75	680.60	4685
17	102.77	8.46	5419.00	723.14	4696
18	103.69	8.06	5467.52	765.68	4702
19	104.52	7.70	5511.28	808.21	4703
19.25	104.71	7.62	5521.30	818.85	4702
19.5	104.9	7.53	5531.32	829.48	4702
19.75	105.09	7.45	5541.34	840.12	4701
20	105.28	7.37	5551.36	850.75	4701
20.25	105.46	7.29	5560.85	861.39	4699
20.5	105.63	7.21	5569.81	872.02	4698
21	105.98	7.07	5588.27	893.29	4695
21.5	106.31	6.92	5605.67	914.56	4691
22	106.63	6.79	5622.54	935.83	4687
23	107.23	6.53	5654.18	978.36	4676
24	107.8	6.29	5684.23	1020.90	4663
25	108.31	6.07	5711.13	1063.44	4648
30	110.48	5.16	5825.55	1276.13	4549
40	113.5	3.97	5984.79	1701.50	4283
50 60	115.52	3.23	6091.30	2126.88	3964
70	116.92	2.73 2.36	6165.13	2552.26	3613 3251
70 80	118.12	2.36	6228.40 6284.29	2977.63	3251 2881
	119.18			3403.01	
90	120.15 120.71	1.87 1.76	6335.44 6364.97	3828.38 4083.61	2507 2281

	Maximum storage volume	4703	m ³
1	Critical Storm Period	19	hr

References

- Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.
- Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

 Reference 3. <a href="https://www.qov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-schemes-

allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E10 Calculation of attentuation storage during a 1 in 30 year storm event plus an allowance for climate change for the attenuation basin C5 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	6	ha	Derived consistent with Section 5 and as shown on Figure 5.
Discharge rate	1021	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.64	unitless	The runoff coefficent has been calculated using he nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	20%	unitless	The recommended precautionary increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3).

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	22.02	105.70	995.23	10.63	985
0.5	28.64	68.74	1294.43	21.27	1273
0.75	32.51	52.02	1469.34	31.90	1437
1	35.48	42.58	1603.58	42.54	1561
1.5	39.85	31.88	1801.09	63.81	1737
2	43.22	25.93	1953.40	85.08	1868
3	48.66	19.46	2199.27	127.61	2072
4	52.92	15.88	2391.81	170.15	2222
5	56.41	13.54	2549.54	212.69	2337
6	59.35	11.87	2682.42	255.23	2427
7	61.91	10.61	2798.13	297.76	2500
8	64.12	9.62	2898.01	340.30	2558
9	66.05	8.81	2985.24	382.84	2602
10	67.76	8.13	3062.53	425.38	2637
11	69.28	7.56	3131.22	467.91	2663
12	70.63	7.06	3192.24	510.45	2682
13	71.84	6.63	3246.93	552.99	2694
14	72.92	6.25	3295.74	595.53	2700
14.5	73.42	6.08	3318.34	616.80	2702
15	73.91	5.91	3340.49	638.06	2702
15.5	74.37	5.76	3361.28	659.33	2702
15.75	74.59	5.68	3371.22	669.97	2701
16	74.81	5.61	3381.16	680.60	2701
16.25	75.02	5.54	3390.65	691.24	2699
16.5	75.23	5.47	3400.14	701.87	2698
16.75	75.43	5.40	3409.18	712.50	2697
17	75.63	5.34	3418.22	723.14	2695
17.5	76.02	5.21	3435.85	744.41	2691
18	76.39	5.09	3452.57	765.68	2687
19	77.08	4.87	3483.76	808.21	2676
20	77.72	4.66	3512.68	850.75	2662
25	80.33	3.86	3630.65	1063.44	2567
30	82.24	3.29	3716.97	1276.13	2441
40	85.11	2.55	3846.69	1701.50	2145
50	87.23	2.09	3942.50	2126.88	1816
60	88.87	1.78	4016.63	2552.26	1464
70	90.33	1.55	4082.61	2977.63	1105
80	91.69	1.38	4144.08	3403.01	741
90	92.98	1.24	4202.39	3828.38	374
96	93.73	1.17	4236.28	4083.61	153

Maximum storage volume	2702	m ³
Critical Storm Period	15	hr

References

- Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.
- Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

 Reference 3. <a href="https://www.qov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-climate-change-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-strategies-decoastal-risk-projects-schemes-and-schemesallowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

AU_KCWg26831 Appendix E Attenuation storage

Table E11

Calculation of attentuation storage during a 1 in 100 year storm event plus an allowance for climate change for the attenuation basin C6 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	4	ha	Derived consistent with Section 5 and as shown on Figure 5.
Discharge rate	710	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.62	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	40%	unitless	The recommended upper end increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3) to test the sensitivity of the design and additional mitigation.

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	29.69	166.26	1052.03	7.39	1045
0.5	38.79	108.61	1374.47	14.79	1360
0.75	44.39	82.86	1572.90	22.18	1551
1	48.39	67.75	1714.63	29.57	1685
1.5	54.55	50.91	1932.91	44.36	1889
2	59.39	41.57	2104.40	59.15	2045
3	67.22	31.37	2381.85	88.72	2293
4	73.3	25.66	2597.29	118.30	2479
5	78.18	21.89	2770.20	147.87	2622
6	82.2	19.18	2912.65	177.44	2735
7	85.57	17.11	3032.06	207.02	2825
8	88.42	15.47	3133.04	236.59	2896
9	90.88	14.14	3220.21	266.17	2954
10	93.02	13.02	3296.04	295.74	3000
15	100.66	9.39	3566.75	443.61	3123
16	101.76	8.90	3605.73	473.18	3133
17	102.77	8.46	3641.52	502.76	3139
17.5	103.24	8.26	3658.17	517.55	3141
18	103.69	8.06	3674.12	532.33	3142
18.5	104.11	7.88	3689.00	547.12	3142
18.75	104.31	7.79	3696.08	554.51	3142
19	104.52	7.70	3703.53	561.91	3142
19.25	104.71	7.62	3710.26	569.30	3141
19.5	104.9	7.53	3716.99	576.69	3140
20	105.28	7.37	3730.46	591.48	3139
21	105.98	7.07	3755.26	621.05	3134
22	106.63	6.79	3778.29	650.63	3128
23	107.23	6.53	3799.55	680.20	3119
24	107.8	6.29	3819.75	709.78	3110
25	108.31	6.07	3837.82	739.35	3098
30 35	110.48 112.15	5.16 4.49	3914.71	887.22 1035.09	3027 2939
40	112.15	3.97	3973.88 4021.72	1182.96	2839
50	113.5 115.52	3.97	4021.72	1182.96 1478.70	2839 2615
60	115.52	2.73	4142.90	1478.70	2368
70	116.92	2.73	4142.90	2070.18	2308
80	118.12	2.30	4222.98	2365.92	1857
90	119.18	1.87	4222.98	2661.66	1596
96	120.15	1.76	4277.20	2839.10	1438

Maximum storage volume	3142	m ³
Critical Storm Period	18.5	hr

References

Reference 1. Na ional Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. https://www.gov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-allowances allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E12

Calculation of attentuation storage during a 1 in 30 year storm event plus an allowance for climate change for the attenuation basin C6 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	4	ha	Derived consistent with Section 5 and as shown on Figure 5.
Discharge rate	710	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.62	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	20%	unitless	The recommended precautionary increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3).

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m ³)
0.25	22.02	105.70	668.78	7.39	661
0.5	28.64	68.74	869.85	14.79	855
0.75	32.51	52.02	987.38	22.18	965
1	35.48	42.58	1077.59	29.57	1048
1.5	39.85	31.88	1210.31	44.36	1166
2	43.22	25.93	1312.67	59.15	1254
3	48.66	19.46	1477.89	88.72	1389
4	52.92	15.88	1607.27	118.30	1489
5	56.41	13.54	1713.27	147.87	1565
6	59.35	11.87	1802.56	177.44	1625
7	61.91	10.61	1880.31	207.02	1673
8	64.12	9.62	1947.43	236.59	1711
9	66.05	8.81	2006.05	266.17	1740
10	67.76	8.13	2057.99	295.74	1762
11	69.28	7.56	2104.15	325.31	1779
12	70.63	7.06	2145.15	354.89	1790
13	71.84	6.63	2181.90	384.46	1797
14	72.92	6.25	2214.70	414.04	1801
14.25	73.18	6.16	2222.60	421.43	1801
14.5	73.42	6.08	2229.89	428.82	1801
14.75	73.67	5.99	2237.48	436.22	1801
15	73.91	5.91	2244.77	443.61	1801
15.5	74.37	5.76	2258.74	458.40	1800
16	74.81	5.61	2272.11	473.18	1799
16.5	75.23	5.47	2284.86	487.97	1797
17 18	75.63 76.39	5.34 5.09	2297.01	502.76 532.33	1794 1788
19	76.39	5.09 4.87	2320.09 2341.05	561.91	1788
20	77.72	4.67	2360.49	591.48	1779
25	80.33	3.86	2439.76	739.35	1700
30	82.24	3.29	2439.76	887.22	1611
35	83.8	2.87	2545.15	1035.09	1510
40	85.11	2.55	2584.94	1182.96	1402
50	87.23	2.09	2649.32	1478.70	1171
60	88.87	1.78	2699.13	1774.44	925
70	90.33	1.55	2743.48	2070.18	673
80	91.69	1.38	2784.78	2365.92	419
90	92.98	1.24	2823.96	2661.66	162
91	93.1	1.23	2827.61	2691.23	136
92	93.23	1.22	2831.55	2720.81	111
93	93.36	1.20	2835.50	2750.38	85
94	93.48	1.19	2839.15	2779.96	59
95	93.61	1.18	2843.10	2809.53	34
96	93.73	1.17	2846.74	2839.10	8

Ī	Maximum storage volume	1801	m ³
- 1	Critical Storm Period	14.75	hr

References

- Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.
- Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.
- Reference 3. https://www.gov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E13 Calculation of attentuation storage during a 1 in 100 year storm event plus an allowance for climate change for the attenuation basin C7 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	3	ha	Derived consistent with Sec ion 5 and as shown on Figure 5.
Discharge rate	569	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0.66	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving he runoff coefficient a dominant vegeta ion type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	40%	unitless	The recommended upper end increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3) to test the sensitivity of the design and additional mitigation.

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	29.69	166.26	908.01	5.93	902
0.5	38.79	108.61	1186.32	11.85	1174
0.75	44.39	82.86	1357.59	17.78	1340
1	48.39	67.75	1479.92	23.71	1456
1.5	54.55	50.91	1668.31	35.56	1633
2	59.39	41.57	1816.34	47.42	1769
3	67.22	31.37	2055.80	71.13	1985
4	73.3	25.66	2241.75	94.84	2147
5	78.18	21.89	2390.99	118.55	2272
6	82.2	19.18	2513.94	142.26	2372
7	85.57	17.11	2617.00	165.97	2451
8	88.42	15.47	2704.16	189.68	2514
9	90.88 93.02	14.14 13.02	2779.40	213.39 237.10	2566 2608
15	100.66	9.39	2844.85 3078.50	355.64	2608
16	101.76	8.90	3112.14	379.35	2733
17	101.76	8.46	3143.03	403.06	2740
18	103.69	8.06	3171.17	426.77	2744
18.25	103.9	7.97	3177.59	432.70	2745
18.5	104.11	7.88	3184.02	438.63	2745
18.75	104.31	7.79	3190.13	444.56	2746
19	104.52	7.70	3196.55	450.48	2746
19.25	104.71	7.62	3202.37	456.41	2746
19.5	104.9	7.53	3208.18	462.34	2746
19.75	105.09	7.45	3213.99	468.26	2746
20	105.28	7.37	3219.80	474.19	2746
20.5	105.63	7.21	3230.50	486.05	2744
21	105.98	7.07	3241.21	497.90	2743
22	106.63	6.79	3261.08	521.61	2739
23	107.23	6.53	3279.43	545.32	2734
24	107.8	6.29	3296.87	569.03	2728
25 30	108.31 110.48	6.07 5.16	3312.46 3378.83	592.74 711.29	2720 2668
35	110.48	5.16 4.49	3378.83	711.29 829.84	2600
40	112.15	3.97	3429.90	948.38	2523
50	115.52	3.23	3532.97	1185.48	2323
60	116.92	2.73	3575.79	1422.58	2153
70	118.12	2.36	3612.49	1659.67	1953
80	119.18	2.09	3644.90	1896.77	1748
90	120.15	1.87	3674.57	2133.86	1541
96	120.71	1.76	3691.70	2276.12	1416

-	Maximum storage volume	2746	m ³
1	Critical Storm Period	19	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

rainfall-intensity-allowances

Denotes parameters which are determined based on he restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E14 Calculation of attentuation storage during a 1 in 30 year storm event plus an allowance for climate change for the attenuation basin C7 catchment using the Rational Method (reference 1)

Parameter	Value	Units	Reference
Catchment area	3	ha	Derived consistent with Section 5 and as shown on Figure 5.
Discharge rate	569	m ³ /day	QBAR (2l/s/ha)
Runoff coefficient	0 66	unitless	The runoff coefficent has been calculated using the nomogram presented on Figure 3 of Reference 1. In deriving the runoff coefficient a dominant vegetation type of cultivated land or short grass has been assumed and dominant soil type of clay/loam has been assumed. The slope is derived based on the catchment.
Climate change factor	20%	unitless	The recommended precautionary increase in rainfall intensity to allow for climate change for 2085 to 2115 (reference 3).

Storm Duration	Rainfall for the site derived from reference 2	Rainfall Intensity corrected for climate change	Volume of rainfall run off in time period	Outflow in time period	Storage necessary in time period
(hr)	(mm)	(mm/hr)	(m³)	(m³)	(m³)
0.25	22.02	105.70	577.24	5.93	571
0.5	28.64	68.74	750.77	11.85	739
0.75	32.51	52.02	852.22	17.78	834
1	35.48	42.58	930.08	23.71	906
1.5	39.85	31.88	1044.63	35.56	1009
2	43.22	25.93	1132.98	47.42	1086
3	48.66	19.46	1275.58	71.13	1204
4	52.92	15.88	1387.25	94.84	1292
5	56.41	13.54	1478.74	118.55	1360
6	59.35	11.87	1555.81	142.26	1414
7	61.91	10.61	1622.92	165.97	1457
8	64.12	9.62	1680.85	189.68	1491
9	66.05	8.81	1731.45	213.39	1518
10	67.76	8.13	1776.27	237.10	1539
11	69.28	7.56	1816.12	260.81	1555
12	70.63	7.06	1851.51	284.52	1567
13	71.84	6.63	1883.22	308.22	1575
14	72.92	6.25	1911.54	331.93	1580
14.5	73.42	6.08	1924.64	343.79	1581
15	73.91	5.91	1937.49	355.64	1582
15.25	74.14	5.83	1943.52	361.57	1582
15.5	74.37	5.76	1949.55	367.50	1582
15.75	74.59	5.68	1955.31	373.43	1582
16	74.81	5.61	1961.08	379.35	1582
16.25	75.02	5.54 5.47	1966.59	385.28	1581
16.5 16.75	75.23 75.43	5.47	1972.09 1977.33	391.21 397.14	1581 1580
16.75	75.43	5.34	1982.58	403.06	1580
17.5	76.02	5.34	1992.80	414.92	1578
17.5	76.39	5.09	2002.50	414.92	1576
18.5	76.74	4.98	2011.67	438.63	1573
19	77.08	4.87	2020.59	450.48	1570
20	77.72	4.66	2037.36	474.19	1563
21	78.32	4.48	2053.09	497.90	1555
22	78.87	4.30	2067.51	521.61	1546
23	79.39	4.14	2081.14	545.32	1536
24	79.88	3.99	2093.99	569.03	1525
25	80.33	3.86	2105.78	592.74	1513
30	82.24	3.29	2155.85	711.29	1445
35	83.8	2.87	2196.75	829.84	1367
40	85.11	2.55	2231.09	948.38	1283
50	87.23	2.09	2286.66	1185.48	1101
60	88 87	1.78	2329.65	1422.58	907
70	90 33	1.55	2367.92	1659.67	708
80	91 69	1.38	2403.58	1896.77	507
90	92 98	1.24	2437.39	2133.86	304
96	93.73	1.17	2457.05	2276.12	181

Maximum storage volume	1582	m ³
Critical Storm Period	15.5	hr

References

Reference 1. National Coal Board, 1982. Technical Management of Water in the Coal Mining Industry.

Reference 2. The Institute of Hydrology, 1999. Flood Estimation Handbook.

Reference 3. <a href="https://www.qov.uk/quidance/flood-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-climate-change-decision-and-coastal-risk-projects-schemes-and-strategies-decision-and-coastal-risk-projects-schemes-and-strategies-decision-and-coastal-risk-projects-schemes-and-strategies-decision-and-coastal-risk-projects-schemes-and-strategies-decision-and-coastal-risk-projects-schemes-and-strategies-decision-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-schemes-and-coastal-risk-projects-sche

allowances#peak-rainfall-intensity-allowances

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Table E15

Indicative height of the bunds needed round the proposed attenuation basins to accommodate additional storage needed for 1 in 100 year event with 40% allowance for climate change (CC)

Catchment	for 1 in 30 year	Storage volume for 1 in 100 year event with 40% CC (m³)	designed to hold	Additional storage needed for 1 in 100 year event with 40% CC (m ³)	Indicative height of bund needed to accommodate 1 in 100 year event with 40% CC (m)
Catchment 1 – Attenuation basin C1	8,465	14,975	8,900	6,510	0.7
Catchment 2 – Attenuation basin C2	2,902	5,040	3,525	2,138	0.6
Catchment 3 – Attenuation basin C3	3,806	6,619	2,780	2,813	1.0
Catchment 4 – Attenuation basin C4	1,315	2,284	1,575	969	0.6
Catchment 5 – Attenuation basin C5	2,702	4,703	3,310	2,001	0.6
Catchment 6 – Attenuation basin C6	1,801	3,142	1,215	1,341	1.1
Catchment 7 – Attenuation basin C7	1,582	2,746	2,225	1,164	0.5

APPENDIX F DRAINAGE DITCH CALCULATIONS

Table F1. Calculations of the conveyancing capacity of the western drainage ditch northwards and southwards from the proposed discharge locations using the Manning Resistance Equation

Parameter	Value	Unit	Justification
Flow rate	63	l/s	Greenfield runoff from upstream catchment and catchments 3 & 4 (2l/s/ha)
Flow rate for 100 year flood event plus climate change	316	l/s	The 1 in 100 year plus 40% allowance for climate change rainfall event for upstream catchment and catchments 3 & 4 (based on greenfield runoff rate above)
Elevation of drain bed at upstream end	85.25	mAOD	The elevation of the current topography along western boundary at proposed C3 & C4 discharge locations - 0.75m (depth of ditch from surface water features survey in October 2019)
Elevation of bed at downstream end	82.00	mAOD	The elevation of ground at the southern crossing - 0.75m (depth of ditch from surface water features survey in October 2019)
Length of ditch	163	m	The length of the western perimeter ditch from the area of C3 & C4 discharges to the southern culvert
Manning roughness coefficient	0.12305		Calculated based on Table F2.
Bed width	1	m	Ditch dimension from surface water features survey in October 2019
Depth of flow Channel area		m ²	The average depth of the channel. Calculated.
Wetted perimeter Hydraulic radius	1.60 0.19		Calculated. Calculated.
	0.19	<u>'</u>	Calculateu.
	0.0000		Coloulated
Gradient	0.0200		Calculated.
Gradient Discharge	0.11	m³/s	Calculated using the Manning Resistance Equation as presented in Reference 1
Gradient		m³/s	
Gradient Discharge	0.11	m³/s l/s	Calculated using the Manning Resistance Equation as presented in Reference 1
Gradient Discharge Discharge	0.11 112.89 0.70	m³/s l/s	Calculated using the Manning Resistance Equation as presented in Reference 1 Calculated.
Gradient Discharge Discharge Depth of flow	0.11 112.89 0.70	m³/s l/s m	Calculated using the Manning Resistance Equation as presented in Reference 1 Calculated. The average depth of the channel.
Gradient Discharge Discharge Depth of flow Channel area	0.11 112.89 0.70	m³/s l/s m m² m	Calculated using the Manning Resistance Equation as presented in Reference 1 Calculated. The average depth of the channel. Calculated. Calculated. Calculated. Calculated.
Gradient Discharge Discharge Depth of flow Channel area Wetted perimeter	0.11 112.89 0.70 0.7 2.40	m³/s l/s m m² m	Calculated using the Manning Resistance Equation as presented in Reference 1 Calculated. The average depth of the channel. Calculated. Calculated.
Gradient Discharge Discharge Depth of flow Channel area Wetted perimeter Hydraulic radius	0.11 112.89 0.70 0.7 2.40 0.29 0.0200	m³/s l/s m m² m	Calculated using the Manning Resistance Equation as presented in Reference 1 Calculated. The average depth of the channel. Calculated. Calculated. Calculated. Calculated.

_	Parameter	Value	Unit	Justification				
ΙE	Flow rate	13	l/s	Greenfield runoff from upstream catchment and catchment 5 (2l/s/ha)				
outhern	Flow rate for 100 year flood event plus climate change	67	I/s	The 1 in 100 year plus 40% allowance for climate change rainfall event for upstream catchment and catchment 5 (based on greenfield runoff rate above)				
ο o	Elevation of drain bed at upstream end	88.39	mAOD	The elevation of the current topography along western boundary at proposed C5 discharge location - 0.75m (depth of ditch from surface water features survey in October 2019)				
	Elevation of bed at downstream end	87.35	mAOD	The elevation of ground at the southern track - 0.75m (depth of ditch from surface water features survey in October 2019)				
draining from off	Length of ditch	63	m	The length of the western perimeter ditch from the area of C5 discharge to the southern track				
<u>ढ</u> ठ	Manning roughness coefficient	0.107		Calculated based on Table F2.				
	Bed width	06	m	Ditch dimension from surface water features survey in October 2019				
ditch nt 5 &								
drainage di catchment	Depth of flow	0.20	m	The average depth of the channel.				
ع ق ا	Channel area	0.12	m ²	Calculated.				
트	Wetted perimeter	1.00	m	Calculated.				
<u>a</u> #	Hydraulic radius	0.12		Calculated.				
	Gradient	0 0166		Calculated.				
j je E	Discharge	0.04	m³/s	Calculated using the Manning Resistance Equation as presented in Reference 1				
from	Discharge	35.17	l/s	Calculated.				
perimeter ditch from	Depth of flow	0.40	m	The average depth of the channel.				
	Channel area	0.24	m ²	Calculated.				
E	Wetted perimeter	1.40	m	Calculated.				
<u> </u>	Hydraulic radius	0.17		Calculated.				
S	Gradient	0 0166		Calculated.				
Western	Discharge	0.09	m³/s	Calculated using the Manning Resistance Equation as presented in Reference 1				
	Discharge	89.24	l/s	Calculated.				

References
Reference 1. Highways Agency. February 2004. Drainage of runoff from natural catchments. Design manual for roads and bridges, Volume 4, Section 2, Part 1. Report reference HA 106/04

Denotes parameters which are determined based on the restoration scheme, rainfall data or other constraints on discharge or water levels Denotes parameters which are calculated based on other parameters

Denotes parameters which are specified to achieve the necessary flow in the ditch

Table F2. Calculation of Manning's Roughness Coefficient, n

 $n = (n_b + n_1 + n_2 + n_3 + n_4)m$

Western ditch draining to north			
Parameter Symbol Value		Value	Justification
Base value	n _b	0.032	Upper end of values for straight uniform channel in Firm Soil (ie clay material).
Irregularity of the channel	n ₁	0.005	Upper end of minor iregularities.
Cross section	n ₂	0.005	Size and shape of channel does not change significantly. This is the upper end of the alternating occasionally category.
Obstructions	n ₃	0.015	Upper end of minor obstructions category.
Vegetation	n ₄	0.05	Upper end of large category.
Meandering	m	1.15	Appreciable meandering - a bend in the ditch course (~35degrees) & will be followed by a further bend (~20 degrees)
	n	0.12305	

Western ditch draining to south				
Parameter	Symbol	Value	ustification	
Base value n _b		0.032	Upper end of values for straight uniform channel in Firm Soil (ie clay material).	
Irregularity of the channel	n_1	0.005	Upper end of minor iregularities.	
Cross section n ₂		0.005	Size and shape of channel does not change significantly. This is the upper end of the alternating occasionally category.	
Obstructions n ₃ 0.015		0.015	Upper end of minor obstructions category.	
Vegetation	n ₄	0.05	Upper end of large category.	
Meandering	m	1	No significant meandering	
	n	0.107		

References

Reference 1. United States Geological Survey. 1989. Guide for Selecting Manning's Roughness Coefficients for Natural Catchments and Floodplains. United States Geological Survey Water-Supply Paper